1887

Abstract

Three bacterial strains, designated MT1, RW10 and IpA-2, had been isolated previously for their ability to degrade chlorosalicylates or isopimaric acid. 16S rRNA gene sequence analysis demonstrated that these bacteria are related to species of the genus . Analysis of the results of DNA–DNA hybridization with several close phylogenetic neighbours revealed a low level of hybridization (less than 57 %). On the basis of phenotypic characteristics, phylogenetic analysis, DNA–DNA relatedness data and chemotaxonomic analysis, it is concluded that these isolates represent separate novel species, for which the names sp. nov. (type strain MT1 =DSM 18361=CCUG 53116), sp. nov. (type strain RW10 =DSM 12647=CCUG 53114) and sp. nov. (type strain IpA-2 =DSM 18327=CCUG 53115) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64703-0
2007-05-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/5/923.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64703-0&mimeType=html&fmt=ahah

References

  1. Ait Tayeb L., Ageron E., Grimont F., Grimont P. A. 2005; Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 156:763–773 [CrossRef]
    [Google Scholar]
  2. Anzai Y., Kim H., Park J. Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  4. Coenye T., Vandamme P. 2003; Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes. FEMS Microbiol Lett 228:45–49 [CrossRef]
    [Google Scholar]
  5. Cowan S. T., Steel K. J. 1974 Cowan and Steel's Manual for the Identification of Medical Bacteria , 2nd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  6. Dorn E., Hellwig M., Reineke W., Knackmuss H. J. 1974; Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99:61–70 [CrossRef]
    [Google Scholar]
  7. Ernst R. K., Yi E. C., Guo L., Lim K. B., Burns J. L., Hackett M., Miller S. I. 1999; Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa . Science 286:1561–1565 [CrossRef]
    [Google Scholar]
  8. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Hilario E., Buckley T. R., Young J. 2004; Improved resolution on the phylogenetic relationships among Pseudomonas by the combined analysis of atpD , carA , recA and 16S rDNA. Antonie van Leeuwenhoek 86:51–64 [CrossRef]
    [Google Scholar]
  10. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. H. New York: Academic Press;
    [Google Scholar]
  11. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307
    [Google Scholar]
  12. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  13. Kwon S. W., Kim J. S., Park I. C., Yoon S. H., Park D. H., Lim C. K., Go S. J. 2003; Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., novel species from farm soils in Korea. Int J Syst Evol Microbiol 53:21–27 [CrossRef]
    [Google Scholar]
  14. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P. 1998; Antarctobacter heliothermus gen. nov., sp. nov. a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48:1363–1372 [CrossRef]
    [Google Scholar]
  15. Martin V. J., Yu Z., Mohn W. W. 1999; Recent advances in understanding resin acid biodegradation: microbial diversity and metabolism. Arch Microbiol 172:131–138 [CrossRef]
    [Google Scholar]
  16. Mohn W. W., Wilson A. E., Bicho P., Moore E. R. 1999; Physiological and phylogenetic diversity of bacteria growing on resin acids. Syst Appl Microbiol 22:68–78 [CrossRef]
    [Google Scholar]
  17. Moore E. R. B., Mau M., Arnscheidt A., Böttger E. C., Hutson R. A., Collins M. D., Van de Peer Y., de Wachter R., Timmis K. N. 1996; The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas ( sensu stricto ) and estimation of the natural intrageneric relationships. Syst Appl Microbiol 19:478–492 [CrossRef]
    [Google Scholar]
  18. Nei M., Kumar S. 2000 Molecular Evolution and Phylogenetics New York: Oxford University Press;
    [Google Scholar]
  19. Nelson K. E., Weinel C., Paulsen I. T., Dodson R. J., Hilbert H., Martins dos Santos V. A., Fouts D. E., Gill S. R., Pop M. other authors 2002; Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808 [CrossRef]
    [Google Scholar]
  20. Nikodem P., Hecht V., Schlömann M., Pieper D. H. 2003; New bacterial pathway for 4- and 5-chlorosalicylate degradation via 4-chlorocatechol and maleylacetate in Pseudomonas sp. strain MT1. J Bacteriol 185:6790–6800 [CrossRef]
    [Google Scholar]
  21. Palleroni N. J. 1984; Pseudomonas Migula 1894, 237AL . In Bergey's Manual of Systematic Bacteriology vol. 1 pp  141–199 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  22. Palleroni N. J., Ballard R. W., Ralston E., Doudoroff M. 1972; Deoxyribonucleic acid homologies among some Pseudomonas species. J Bacteriol 110:1–11
    [Google Scholar]
  23. Palleroni N. J., Kunsawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas . Int J Syst Bacteriol 23:333–339 [CrossRef]
    [Google Scholar]
  24. Pelz O., Tesar M., Wittich R. M., Moore E. R., Timmis K. N., Abraham W. R. 1999; Towards elucidation of microbial community metabolic pathways: unravelling the network of carbon sharing in a pollutant-degrading bacterial consortium by immunocapture and isotopic ratio mass spectrometry. Environ Microbiol 1:167–174 [CrossRef]
    [Google Scholar]
  25. Pieper D. H., Reineke W. 2004; Degradation of chloroaromatics by pseudomona(d)s. In Pseudomonas pp  509–574 Edited by Ramos J.-L. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
  26. Sohlenkamp C., Lopez-Lara I. M., Geiger O. 2003; Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res 42:115–162 [CrossRef]
    [Google Scholar]
  27. Stead D. E. 1992; Grouping of plant-pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles. Int J Syst Bacteriol 42:281–295 [CrossRef]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  29. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  30. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  31. Vancanneyt M., Witt S., Abraham W.-R., Kersters K., Fredrickson H. 1996; Fatty acid content in whole-cell hydrolysates and phospholipids fractions of pseudomonads: a taxonomic evaluation. Syst Appl Microbiol 19:528–540 [CrossRef]
    [Google Scholar]
  32. Wayne L. G., Good R. C., Krichevsky M. I., Blacklock Z., David H. L., Dawson D., Gross W., Hawkins J., Levy-Frebault V. V. other authors 1991; Fourth report of the cooperative, open-ended study of slowly growing mycobacteria by the International Working Group on Mycobacterial Taxonomy. Int J Syst Bacteriol 41:463–472 [CrossRef]
    [Google Scholar]
  33. Wilkinson S. G. 1968; Studies on the cell walls of Pseudomonas species resistant to ethylenediaminetetra-acetic acid. J Gen Microbiol 54:195–213 [CrossRef]
    [Google Scholar]
  34. Wilson A. E., Moore E. R., Mohn W. W. 1996; Isolation and characterization of isopimaric acid-degrading bacteria from a sequencing batch reactor. Appl Environ Microbiol 62:3146–3151
    [Google Scholar]
  35. Wittich R. M., Strömpl C., Moore E. R., Blasco R., Timmis K. N. 1999; Interaction of Sphingomonas and Pseudomonas strains in the degradation of chlorinated dibenzofurans. J Ind Microbiol Biotechnol 23:353–358 [CrossRef]
    [Google Scholar]
  36. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
  37. Yamamoto S., Bouvet P. J., Harayama S. 1999; Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA–DNA hybridization. Int J Syst Bacteriol 49:87–95 [CrossRef]
    [Google Scholar]
  38. Yamamoto S., Kasai H., Arnold D. L., Jackson R. W., Vivian A., Harayama S. 2000; Phylogeny of the genus Pseudomonas : intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146:2385–2394
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64703-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64703-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error