1887

Abstract

The taxonomic position of sp. B13, isolated as a 3-chlorobenzoate-degrading organism and used for several groundbreaking studies on the enzymology and genetics of the degradative pathway for haloaromatic compounds, was studied in detail. The previously performed physiological studies, the detection of ubiquinone Q-9, the polyamine pattern with putrescine and spermidine as major polyamines, a fatty acid profile with C 7, summed feature 3 and C as quantitatively the most important constituents and the 16S rRNA gene sequence demonstrated that sp. B13 indeed belongs to the genus . The sequence of the sp. B13 16S rRNA gene demonstrated a high degree of similarity with that of DSM 50332 (98.9 %), DSM 14399 (98.7 %), DSM 16612 (98.1 %) and DSM 17553 (98.7 %). Thus it was shown that strain sp. B13 can be distinguished from related species by the ability/inability to assimilate -acetylgalactosamine, -galactose, putrescine, -aconitate and mesaconate and some differences in the fatty acid profile. The positioning of sp. B13 as a separate taxon was finally verified by DNA hybridization, which demonstrated less than 45 % DNA–DNA similarity between strain sp. B13 and the reference strains. On the basis of these results, sp. B13 represents a novel species for which the name sp. nov. is proposed. The type strain is B13 (=DSM 6978=LMG 23759).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64761-0
2007-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/3/572.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64761-0&mimeType=html&fmt=ahah

References

  1. Achouak W., Sudra L., Heulin T., Meyer J.-M., Fromin N., Degraeve S., Christen R., Gardan L. 2000; Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov.,two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana . Int J Syst Evol Microbiol 50:9–18 [CrossRef]
    [Google Scholar]
  2. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H. J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [CrossRef]
    [Google Scholar]
  3. Andersen S. M., Johnsen K., Sørensen J., Nielsen P., Jacobsen C. S. 2000; Pseudomonas frederiksbergensis sp. nov., isolated from soil at a coal gasification site. Int J Syst Evol Microbiol 50:1957–1964 [CrossRef]
    [Google Scholar]
  4. Anzai Y., Kim H., Park J.-Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef]
    [Google Scholar]
  5. Auling G., Busse H.-J., Pilz F., Webb L., Kneifel H., Claus D. 1991; Rapid differentiation by polyamine analysis of Xanthomonas strains from phytopathogenic pseudomonads and other members of the class Proteobacteria interacting with plants. Int J Syst Bacteriol 41:223–228 [CrossRef]
    [Google Scholar]
  6. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  7. Busse H.-J., El Banna T., Auling G. 1989; Evaluation of different approaches for identification of xenobiotic-degrading pseudomonads. Appl Environ Microbiol 55:1578–1583
    [Google Scholar]
  8. Busse H.-J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [CrossRef]
    [Google Scholar]
  9. Dorn E., Knackmuss H.-J. 1978a; Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem J 174:73–84
    [Google Scholar]
  10. Dorn E., Knackmuss H.-J. 1978b; Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effect on 1,2-dioxygenation of catechol. Biochem J 174:85–94
    [Google Scholar]
  11. Dorn E., Hellwig M., Reineke W., Knackmuss H.-J. 1974; Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99:61–70 [CrossRef]
    [Google Scholar]
  12. Gaillard M., Vallaeys T., Vorholter F. J., Minoia M., Werlen C., Sentchilo V., Pühler A., van der Meer J. R. 2006; The clc element of Pseudomonas sp. strain B13, a genomic island with various catabolic properties. J Bacteriol 188:1999–2013 [CrossRef]
    [Google Scholar]
  13. Hauser E., Kämpfer P., Busse H.-J. 2004; Pseudomonas psychrotolerans sp. nov. Int J Syst Evol Microbiol 54:1633–1637 [CrossRef]
    [Google Scholar]
  14. Kämpfer P., Denner E. B. M., Meyer S., Moore E. R. B., Busse H.-J. 1997; Classification of “ Pseudomonas azotocolligans ” Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47:577–583 [CrossRef]
    [Google Scholar]
  15. Kämpfer P., Buczolits S., Albrecht A., Busse H.-J., Stackebrandt E. 2003; Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov. Int J Syst Bacteriol 53:893–896 [CrossRef]
    [Google Scholar]
  16. Kaschabek S. R., Reineke W. 1992; Maleylacetate reductase of Pseudomonas sp. strain B13: dechlorination of chloromaleylacetates, metabolites in the degradation of chloroaromatic compounds. Arch Microbiol 158:412–417
    [Google Scholar]
  17. Kwon S. W., Kim J. S., Park I. C., Yoon S. H., Park D. H., Lim C. K., Go S. J. 2003; Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., novel species from farm soils in Korea. . Int J Syst Evol Microbiol 53:21–27 [CrossRef]
    [Google Scholar]
  18. Mohn W. W., Wilson A. E., Bicho P., Moore E. R. B. 1999; Physiological and phylogenetic diversity of bacteria growing on resin acids. Syst Appl Microbiol 22:68–78 [CrossRef]
    [Google Scholar]
  19. Palleroni N. J. 2005 Genus I Pseudomonas Migula 1894, 237AL. In Bergey's Manual of Systematic Bacteriology , The Proteobacteria Part B The Gammaproteobacteria , 2nd edn. vol 2 pp  323–379 Edited by Brenner D. J., Krieg N. R., Staley J. T. Heidelberg & New York: Springer;
    [Google Scholar]
  20. Ramos J. L., Stolz A., Reineke W., Timmis K. N. 1986; Altered effector specificities in regulators of gene expression: TOL plasmid xylS mutants and their use to engineer expansion of the range of aromatics degraded by bacteria. Proc Natl Acad Sci U S A 83:8467–8471 [CrossRef]
    [Google Scholar]
  21. Reineke W., Knackmuss H.-J. 1978a; Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of benzoic acid. Biochim Biophys Acta 542:412–423 [CrossRef]
    [Google Scholar]
  22. Reineke W., Knackmuss H.-J. 1978b; Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on dehydrogenation of 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid. Biochim Biophys Acta 542:424–429 [CrossRef]
    [Google Scholar]
  23. Reineke W., Knackmuss H.-J. 1979; Construction of haloaromatics utilising bacteria. Nature 277:385–386 [CrossRef]
    [Google Scholar]
  24. Reineke W., Knackmuss H.-J. 1980; Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B13 derivatives. J Bacteriol 142:467–473
    [Google Scholar]
  25. Rojo F., Pieper D. H., Engesser K.-H., Knackmuss H.-J., Timmis K. N. 1987; Assemblage of ortho -cleavage route for simultaneous degradation of chloro- and methylaromatics. Science 238:1395–1398 [CrossRef]
    [Google Scholar]
  26. Rubio M. A., Engesser K.-H., Knackmuss H.-J. 1986; Microbial metabolism of chlorosalicylates: accelerated evolution of natural genetic exchange. Arch Microbiol 145:116–122 [CrossRef]
    [Google Scholar]
  27. Schmidt E., Knackmuss H.-J. 1980a; Chemical structure and biodegradability of halogenated aromatic compounds. Halogenated muconic acids as intermediates. Biochem J 192:331–337
    [Google Scholar]
  28. Schmidt E., Knackmuss H.-J. 1980b; Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Biochem J 192:339–347
    [Google Scholar]
  29. Sikorski J., Stackebrandt E., Wackernagel W. 2001; Pseudomonas kilonensis sp. nov., a bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 51:1549–1555
    [Google Scholar]
  30. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  31. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271 [CrossRef]
    [Google Scholar]
  32. Tindall B. J. 1990; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  33. Ventosa A., Marquez M. C., Kocur M., Tindall B. J. 1993; Comparative study of “ Micrococcus sp.” strains CCM 168 and CCM 1405 and members of the genus Salinicoccus . Int J Syst Bacteriol 43:245–248 [CrossRef]
    [Google Scholar]
  34. Wischnak C., Löffler F. E., Li J., Urbance J. W., Müller R. 1998; Pseudomonas sp. strain 273, an aerobic α , ω -dichloroalkane degrading bacterium. Appl Environ Microbiol 64:3507–3511
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64761-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64761-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error