1887

Abstract

Two strains, designated WB 3.4-79 and WB 3.3-25, were isolated from a hard-water sample collected from the Westerhöfer Bach, Lower Saxony, Germany. The strains shared 100 % DNA–DNA relatedness, indicating membership of the same genospecies. This close relationship was supported by identical 16S rRNA gene sequences and high similarities in fatty acid composition and biochemical characteristics. The G+C content of the genomic DNA of strain WB 3.4-79 was 48.5 mol% and the predominant ubiquinone was Q-8. Major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. Major fatty acids (>10 %) were C and C 7. Polyhydroxybutyrate and polyphosphate granules as well as unidentified enterosomes and a polar organelle are visible by electron microscopy. Comparative 16S rRNA gene sequence analysis indicated that the isolates were placed within the class , remotely related to DSM 15459, KCTC 12358, DSM 6150 and DSM 3764. On the basis of phylogenetic and phenotypic distinctness, we propose a novel genus, gen. nov., with sp. nov. as the type species. The type strain of is strain WB 3.4-79 (=DSM 18356=CIP 109326).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64771-0
2007-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/3/639.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64771-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Brambilla E., Päuker O., Cousin S., Steiner U., Reimer A., Stackebrandt E. 2007 High phylogenetic diversity of Flavobacterium spp. in a hardwater creek Harz Mountain, Germany: Org Divers Evol (in press);
    [Google Scholar]
  3. Brinsmade S. R., Paldon T., Escalante-Semerena J. C. 2005; Minimal functions and physiological conditions required for growth of Salmonella enterica on ethanolamine in the absence of the metabolosome. J Bacteriol 187:8039–8046 [CrossRef]
    [Google Scholar]
  4. Cannon G. C., Bradburne C. E., Aldrich H. C., Baker S. H., Heinhorst S., Shively J. M. 2001; Microcompartments in prokaryotes: carboxysomes and related polyhedra. Appl Environ Microbiol 67:5351–5361 [CrossRef]
    [Google Scholar]
  5. Chern L.-L., Stackebrandt E., Lee S.-F., Lee F.-L., Chen J.-K., Fu H.-M. 2004; Chitinibacter tainanensis gen. nov., sp. nov., a chitin-degrading aerobe from soil in Taiwan. Int J Syst Evol Microbiol 54:1387–1391 [CrossRef]
    [Google Scholar]
  6. Cousin S., Päuker O., Stackebrandt E. 2007; Flavobacterium aquidurense sp. nov. and Flavobacterium hercynium sp. nov., from a hard-water creek. Int J Syst Evol Microbiol 57:243–249 [CrossRef]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  8. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626 [CrossRef]
    [Google Scholar]
  9. DSMZ 2001 Catalogue of strains , 7th edn. Braunschweig, Germany: Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH;
    [Google Scholar]
  10. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  12. Felsenstein J. 1993 phylip – Phylogeny Inference Package, version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  13. Golyshina O. V., Pivovarova T. A., Karavaiko G. I., Kondrat'eva T. F., Moore E. R. B., Abraham W. R., Lünsdorf H., Timmis K. N., Yakimov M. M., Golyshin P. N. 2000; Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea . Int J Syst Evol Microbiol 50:997–1006 [CrossRef]
    [Google Scholar]
  14. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  16. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  17. Kroppenstedt R. M., Mannheim W. 1989; Lipoquinones in members of the family Pasteurellaceae . Int J Syst Bacteriol 39:304–308 [CrossRef]
    [Google Scholar]
  18. Lünsdorf H., Strömpl C., Osborn A. M., Bennasar A., Moore E. R. B., Abraham W.-R., Timmis K. N. 2001; Approach to analyze interactions of microorganisms, hydrophobic substrates, and soil colloids leading to formation of composite biofilms, and to study initial events in microbiogeological processes. Methods Enzymol 336:317–331
    [Google Scholar]
  19. Lünsdorf H., Kristen I., Barth E. 2006; Cationic hydrous thorium dioxide colloids – a useful tool for staining negatively charged surface matrices of bacteria for use in energy-filtered transmission electron microscopy. BMC Microbiol 6:59 [CrossRef]
    [Google Scholar]
  20. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Woese C. R. 1997; The ribosomal database project. Nucleic Acids Res 25:109–111 [CrossRef]
    [Google Scholar]
  21. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  23. MIDI Inc 1999 Sherlock Microbial Identification System, Operating Manual , version 3.0 Newark, DE: MIDI, Inc;
    [Google Scholar]
  24. Miller L. T. 1982; A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  25. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of isoprenoid quinines and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  26. Ostle A. G., Holt J. G. 1982; Nile blue A as a fluorescent strain for poly- β -hydroxybutyrate. Appl Environ Microbiol 44:238–241
    [Google Scholar]
  27. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and distinct actinomycete lineage; proposal for Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  28. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16
    [Google Scholar]
  29. Seufferheld M., Vieira M. C. F., Ruiz F. A., Rodrigues C. O., Moreno S. N. J., Docampo R. 2003; Identification of organelles in bacteria similar to acidocalcisomes of unicellular eukaryotes. J Biol Chem 278:29971–29978 [CrossRef]
    [Google Scholar]
  30. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–655 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Spurr A. R. 1969; A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43 [CrossRef]
    [Google Scholar]
  32. Stackebrandt E., Ebers J. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155
    [Google Scholar]
  33. Tanaka K., Nakamura K., Mikami E. 1991; Fermentation of S-citramalate, citrate, mesaconate, and pyruvate by a gram-negative strictly anaerobic non-spore-former, Formivibrio citricus gen. nov. sp. nov.. Arch Microbiol 155:491–495 [CrossRef]
    [Google Scholar]
  34. Tauschel H. D. 1985; ATPase and cytochrome oxidase activities at the polar organelle in swarm cells of Sphaerotilus natans : an ultrastructural study. Arch Microbiol 141:303–308 [CrossRef]
    [Google Scholar]
  35. Yakimov M. M., Golyshin P. N., Lang S., Moore E. R. B., Abraham W. R., Lünsdorf H., Timmis K. N. 1998; Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348 [CrossRef]
    [Google Scholar]
  36. Yang H.-C., Im W.-T., An D.-S., Park W.-S., Kim I. S., Lee S.-T. 2005; Silvimonas terrae gen. nov., sp. nov., a novel chitin-degrading facultative anaerobe belonging to the ‘ Betaproteobacteria ’. Int J Syst Evol Microbiol 55:2329–2332 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64771-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64771-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error