1887

Abstract

A novel thermophilic and heterotrophic sulfate-reducing bacterium, strain TFISO9, was isolated from a deep-sea hydrothermal field at the Yonaguni Knoll IV in the Southern Okinawa Trough. The cells were motile rods 2.5–5.0 μm in length and 0.6–0.9 μm in width. Strain TFISO9 was an obligate heterotroph and reduced sulfate. It grew between 35 and 60 °C (optimum 50 °C), at pH 5.4–7.9 (optimum pH 5.9–6.4) and with 1.5–4.5 % NaCl (optimum 2.5 %). The fatty acid composition was C (61.5 %) and 12Me (38.5 %). The DNA G+C content was 34.9 mol%. The 16S rRNA gene sequence analysis indicated that strain TFISO9 belonged to the genus Based on physiological and phylogenetic characteristics, strain TFISO9 represents a novel species for which the name sp. nov. is proposed. The type strain is TFISO9 (=JCM 13304=DSM 17375).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64781-0
2007-10-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/10/2360.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64781-0&mimeType=html&fmt=ahah

References

  1. Alazard D., Dukan S., Urios A., Verhé F., Bouabida N., Morel F., Thomas P., Garcia J.-L., Ollivier B. 2003; Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol 53:173–178 [CrossRef]
    [Google Scholar]
  2. Audiffrin C., Cayol J. L., Joulian C., Casalot L., Thomas P., Garcia J. L., Ollivier B. 2003; Desulfonauticus submarinus gen. nov., sp. nov. a novel sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:1585–1590 [CrossRef]
    [Google Scholar]
  3. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  4. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [CrossRef]
    [Google Scholar]
  5. Dhillon A., Teske A., Dillon J., Stahl D. A., Sogin M. L. 2003; Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69:2765–2772 [CrossRef]
    [Google Scholar]
  6. Ehrenreich P. 1996; Anaerobes Wachstum neuartiger sulfatreduzierender und nitratreduzierender Bakterien auf n-Alkanen und Erdöl . PhD thesis University of Bremen;
  7. Elsgaard L., Isaksen M. F., Jorgensen B. B., Alayse A. M., Jannasch H. W. 1994; Microbial sulfate reduction in deep-sea sediments at Guaymas Basin hydrothermal vent area: influence of temperature and substrates. Geochim Cosmochim Acta 58:3335–3343 [CrossRef]
    [Google Scholar]
  8. Jeanthon C., L'Haridon S., Cueff V., Banta A., Reysenbach A.-L., Prieur D. 2002; Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium . Int J Syst Evol Microbiol 52:765–772 [CrossRef]
    [Google Scholar]
  9. Jørgensen B., Isaksen M. F., Jannasch H. W. 1992; Bacterial sulfate reduction above 100 °C in deep-sea hydrothermal vent sediments. Science 258:1756–1757 [CrossRef]
    [Google Scholar]
  10. Konno U., Tsunogai U., Nakagawa F., Nakashima M., Ishibashi J., Nunoura T., Nakamura K. 2006; Liquid CO2 venting on seafloor: Yonaguni Knoll IV hydrothermal system. Okinawa Trough. Geophys Res Lett 33: L16607 [CrossRef]
    [Google Scholar]
  11. Kuever J., Rainey F. A., Widdel F. 2005 Genus III . Desulfothermus gen. nov. In Bergey's Manual of Systematic Bacteriology , 2nd edn, vol. 2, The Proteobacteria , Part C, The Alpha- , Beta- , Delta- , and Epsilonproteobacteria pp 955–956 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
  12. Lane D. J. 1985; 16S–23S rRNA sequencing. In Techniques in Bacterial Systematics pp 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  13. Lauerer G., Kristjansson J. K., Langworthy T. A., König H., Stetter K. O. 1986; Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97 °C. Syst Appl Microbiol 8:100–105 [CrossRef]
    [Google Scholar]
  14. Moussard H., L'Haridon S., Tindall B. J., Banta A., Schumann P., Stackebrandt E., Reysenbach A. L., Jeanthon C. 2004; Thermodesulfatator indicus gen. nov., sp. nov. a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 54:227–233 [CrossRef]
    [Google Scholar]
  15. Nakagawa T., Nakagawa S., Inagaki F., Takai K., Horikoshi K. 2004a; Phylogenetic diversity of sulfate-reducing prokaryotes in active deep-sea hydrothermal vent chimney structures. FEMS Microbiol Lett 232:145–152 [CrossRef]
    [Google Scholar]
  16. Nakagawa T., Ishibashi J., Maruyama A., Yamanaka T., Morimoto Y., Kimura H., Urabe T., Fukui M. 2004b; Analysis of dissimilatory sulfite reductase and 16S rRNA gene fragments from deep-sea hydrothermal sites of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific. Appl Environ Microbiol 70:393–403 [CrossRef]
    [Google Scholar]
  17. Nakagawa S., Takai K., Inagaki F., Chiba H., Ishibashi J., Kataoka S., Hirayama H., Nunoura T., Horikoshi K., Sako Y. 2005; Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: impacts of subseafloor phase-separation. FEMS Microbiol Ecol 54:141–155 [CrossRef]
    [Google Scholar]
  18. Porter K. G., Feig Y. S. 1980; The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948 [CrossRef]
    [Google Scholar]
  19. Rueter P., Rabus R., Wilkest H., Aeckersberg F., Rainey F. A., Jannasch H. W., Widdel F. 1994; Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455–458 [CrossRef]
    [Google Scholar]
  20. Sako Y., Takai K., Ishida Y., Uchida A., Katayama Y. 1996; Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol 46:1099–1104 [CrossRef]
    [Google Scholar]
  21. Takai K., Sugai A., Itoh T., Horikoshi K. 2000; Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500 [CrossRef]
    [Google Scholar]
  22. Takai K., Komatsu T., Inagaki F., Horikoshi K. 2001; Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629 [CrossRef]
    [Google Scholar]
  23. Takai K., Kobayashi H., Nealson K. H., Horikoshi K. 2003; Sulfurihydrogenibium subterraneum gen. nov., sp. nov. from a subsurface hot aquifer. Int J Syst Evol Microbiol 53:823–827 [CrossRef]
    [Google Scholar]
  24. Takai K., Hirayama H., Nakagawa T., Suzuki Y., Nealson K. H., Horikoshi K. 2005 Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. Int J Syst Evol Microbiol 55183–189 [CrossRef]
  25. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  26. Zillig W., Holz I., Janekovic D., Klenk H. P., Imsel E., Trent J., Wunderl S., Forjaz V. H., Coutinho R., Ferreira T. 1990; Hyperthermus butylicus , a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64781-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64781-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error