1887

Abstract

A Gram-negative, short rod to oval-shaped bacterium (strain MW2a) was isolated from the surface of leaves of the black mangrove and subjected to a polyphasic taxonomic study. Strain MW2a was moderately halophilic, growing at NaCl concentrations in the range 0–25 % (w/v) with optimum growth at 5 % (w/v) NaCl. Growth occurred at 12–40 °C (optimum, 30–35 °C) and at pH 5.0–9.0 (optimum, pH 7.0–8.0). Strain MW2a was strictly aerobic. Phylogenetic analysis based on the 16S rRNA gene showed that the strain belongs to the genus . The closest relative was , with 98.6 % 16S rRNA gene sequence similarity. The DNA G+C content of strain MW2a was 61.5 mol%, which is in the range of values for species. DNA–DNA hybridization with showed a relatedness of 42 % and lower values were obtained with respect to other related species. The major fatty acids were C, C cyclo 8, C 7 and C 3-OH. Overall, the phenotypic, genotypic and phylogenetic results presented in this study demonstrate that strain MW2a represents a novel species within the genus . The name sp. nov. is proposed, with strain MW2a (=CECT 7193=CCM 7396) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64818-0
2007-05-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/5/900.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64818-0&mimeType=html&fmt=ahah

References

  1. Arahal D. R., Ventosa A. 2005 The family Halomonadaceae . In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community , 3rd edn, release 3.20. Edited by Dworkin M. New York: Springer;
    [Google Scholar]
  2. Arahal R. D., Garcia M. T., Ludwig W., Schleifer K. H., Ventosa A. 2001; Transfer of Halomonas canadensis and Halomonas israelensis to the genus Chromohalobacter as Chromohalobacter canadensis comb. nov. and Chromohalobacter israelensis comb. nov. Int J Syst Evol Microbiol 51:1443–1448
    [Google Scholar]
  3. Arahal R. D., Ludwig W., Schleifer K. H., Ventosa A. 2002; Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52:241–249
    [Google Scholar]
  4. Bauer A. W., Kirby W. M. M., Sherris J. C., Turck M. 1966; Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496
    [Google Scholar]
  5. Baumann L., Bowditch R. D., Baumann P. 1983; Description of Deleya gen. nov. created to accommodate the marine species Alcaligenes aestus , A. pacificus , A. cupidus , A. venustus , and Pseudomonas marina . Int J Syst Bacteriol 33:793–802 [CrossRef]
    [Google Scholar]
  6. Bouchotroch S., Quesada E., del Moral A., Llamas I., Bejar V. 2001; Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51:1625–1632 [CrossRef]
    [Google Scholar]
  7. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  8. De Ley J., Tijtgat R. 1970; Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek 36:461–474 [CrossRef]
    [Google Scholar]
  9. Díaz-Muñoz G., Montalvo-Rodríguez R. 2005; Halophilic black yeast Hortaea werneckii in the Cabo Rojo Solar Salterns: its first record for this extreme environment in Puerto Rico. Caribb J Sci 41:360–365
    [Google Scholar]
  10. Dobson S. J., Franzmann P. D. 1996; Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas , and placement of the genus Zymobacter in the family Halomonadaceae . Int J Syst Bacteriol 46:550–558 [CrossRef]
    [Google Scholar]
  11. Dussault H. P. 1955; An improved technique for staining red-halophilic bacteria. J Bacteriol 70:484–485
    [Google Scholar]
  12. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.6. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  13. Franzmann P. D., Wehmeyer U., Stackebrandt E. 1988; Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya . Syst Appl Microbiol 11:16–19 [CrossRef]
    [Google Scholar]
  14. Garcia M. T., Mellado E., Ostos J. C., Ventosa A. 2004; Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 54:1723–1728 [CrossRef]
    [Google Scholar]
  15. Hebert A. M., Vreeland R. H. 1987; Phenotypic comparison of halotolerant bacteria: Halomonas halodurans sp. nov., nom. rev., comb. nov.. Int J Syst Bacteriol 37347–350 [CrossRef]
    [Google Scholar]
  16. Heyrman J., Balcaen A., De Vos P., Swings J. 2002; Halomonas muralis sp. nov., isolated from microbial biofilms colonizing the walls and murals of the Saint-Catherine chapel (Castle Herberstein, Austria). Int J Syst Evol Microbiol 52:2049–2054 [CrossRef]
    [Google Scholar]
  17. Hezayen F. F., Tindall B. J., Steinbüchel A., Rehm B. H. A. 2002; Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov. and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov. Int J Syst Evol Microbiol 52:2271–2280 [CrossRef]
    [Google Scholar]
  18. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology . pp  655–681 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  19. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  20. Kaye J. Z., Márquez M. C., Ventosa A., Baross J. A. 2004; Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 54:499–511 [CrossRef]
    [Google Scholar]
  21. Koser S. A. 1923; Utilization of the salts of organic acids by the Colon-Aerogenes group. J Bacteriol 8:493–520
    [Google Scholar]
  22. Lee J.-C., Jeon C. O., Lim J.-M., Lee S.-M., Lee J.-M., Song S.-M., Park D.-J., Li W.-J., Kim C.-J. 2005; Halomonas taeanensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. Int J Syst Evol Microbiol 55:2027–2032 [CrossRef]
    [Google Scholar]
  23. Lim J.-M., Yoon J.-H., Lee J.-C., Jeon C. O., Park D.-J., Sung C., Kim C.-J. 2004; Halomonas koreensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. Int J Syst Evol Microbiol 54:2037–2042 [CrossRef]
    [Google Scholar]
  24. Lugo A. E., Snedaker S. C. 1975; Properties of a mangrove forest in southern Florida. In Actas , International Symposium on Biological Management of Mangroves pp  170–212 Edited by Walsh G., Snedaker S. C., Teas H. Gainesville: University of Florida;
    [Google Scholar]
  25. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project (RDP). Nucleic Acids Res 24:82–85 [CrossRef]
    [Google Scholar]
  26. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  27. Martínez-Cánovas M. J., Béjar V., Martínez-Checa F., Quesada E. 2004; Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland wildfowl reserve in Málaga, southern Spain. Int J Syst Evol Microbiol 54:1329–1332 [CrossRef]
    [Google Scholar]
  28. Martínez-Checa F., Bejar V., Martínez-Cánovas J., Llamas I., Quesada E. 2005; Halomonas almeriensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium from Cabo de Gata, Almería, south-east Spain. Int J Syst Evol Microbiol 55:2007–2011 [CrossRef]
    [Google Scholar]
  29. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V. 2002; A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375 [CrossRef]
    [Google Scholar]
  30. Mellado E., Moore E. R. B., Nieto J. J., Ventosa A. 1995; Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui , Volcaniella eurihalina , and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. Int J Syst Bacteriol 45:712–716 [CrossRef]
    [Google Scholar]
  31. Miller L. T. 1982; Single derivation method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  32. Montalvo-Rodríguez R., Vreeland R. H., Oren A., Kessel M., Betancourt C., López-Garriga J. 1998; Halogeometricum borinquense gen. nov., sp. nov. a novel halophilic archaeon from Puerto Rico. Int J Syst Bacteriol 48:1305–1312 [CrossRef]
    [Google Scholar]
  33. Montalvo-Rodríguez R., López-Garriga J., Vreeland R. H., Oren A., Ventosa A., Kamekura M. 2000; Haloterrigena thermotolerans sp. nov., a halophilic archaeon from Puerto Rico. Int J Syst Evol Microbiol 50:1065–1071 [CrossRef]
    [Google Scholar]
  34. Mormile M. R., Romine M. F., Garcia M. T., Ventosa A., Bailey T. J., Peyton B. M. 1999; Halomonas campisalis sp. nov., a dentrifying, moderately haloalkaliphilic bacterium. Syst Appl Microbiol 22:551–558 [CrossRef]
    [Google Scholar]
  35. Owen R. J., Hill L. R. 1979; The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. In Chemical Methods for Microbiologists pp  277–296 Edited by Skinner F. A., Lovelock D. W. London: Academic Press;
    [Google Scholar]
  36. Page R. D. M. 1996; treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  37. Quillaguaman J., Hatti-Kaul R., Mattiasson B., Alvarez M. T., Delgado O. 2004; Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int J Syst Evol Microbiol 54:721–725 [CrossRef]
    [Google Scholar]
  38. Romanenko L. A., Schumann P., Rohde M., Mikhailov V. V., Stackebrandt E. 2002; Halomonas halocynthiae sp. nov., isolated from the marine ascidian Halocynthiae aurantium . Int J Syst Evol Microbiol 52:1773–1782 [CrossRef]
    [Google Scholar]
  39. Seghal S. N., Gibbons N. E. 1960; Effect of metal ions on the growth of Halobacterium cutirubrum . Can J Microbiol 6:165–169 [CrossRef]
    [Google Scholar]
  40. Simmons J. S. 1926; A culture medium for differentiating organisms of typhoid-colon aerogenes groups and for isolation of certain fungi. J Infect Dis 39:209 [CrossRef]
    [Google Scholar]
  41. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  42. Ventosa A., Quesada E., Rodríguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968
    [Google Scholar]
  43. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544
    [Google Scholar]
  44. Ventosa A., Gutiérrez M. C., Kamekura M., Dyall-Smith M. L. 1999; Proposal to transfer Halococcus turkmenicus , Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov. Int J Syst Bacteriol 49:131–136 [CrossRef]
    [Google Scholar]
  45. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata , a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495 [CrossRef]
    [Google Scholar]
  46. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  47. Yoon J.-H., Choi S. H., Lee K.-C., Kho Y. H., Kang K. H., Park Y.-H. 2001; Halomonas marisflavae sp. nov., a halophilic bacterium isolated from the Yellow Sea in Korea. Int J Syst Evol Microbiol 51:1171–1177 [CrossRef]
    [Google Scholar]
  48. Yoon J.-H., Lee K.-C., Kho Y. H., Kang K. H., Kim C.-J., Park Y.-H. 2002; Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 52:123–130
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64818-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64818-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error