1887

Abstract

A slightly pink-coloured strain, strain DFL-11, was isolated from single cells of the marine dinoflagellate and was found to contain the genes encoding two proteins of the photosynthetic reaction centre, and . 16S rRNA gene sequence analysis revealed that the novel strain belonged to the -2 subgroup of the and was most closely related to (97.7 % similarity), (98.0 %) and (98.0 %). Dark-grown cells of strain DFL-11 contained small amounts of bacteriochlorophyll (bchl ) and a carotenoid. Cells of strain DFL-11 were rods, 0.5–0.7×0.9–3.0 μm in size and motile by means of a single, subpolarly inserted flagellum. The novel strain was strictly aerobic and utilized a wide range of organic carbon sources, including fatty acids, tricarboxylic acid cycle intermediates and sugars. Biotin and thiamine were required as growth factors. Growth was obtained at sea salt concentrations of between 1 and 10 % (w/v), at a pH between 6 and 9.2 and at a temperature of up to 33 °C (optimum, 26 °C). Nitrate was not reduced and indole was not produced from tryptophan. Strain DFL11 was resistant to potassium tellurite and transformed it to elemental tellurium. The major respiratory lipoquinone was ubiquinone 10 (Q10). The polar lipids comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine, an unidentified aminolipid and the glycolipid sulphoquinovosyldiacylglyceride. The fatty acids comprised 16 : 17, 16 : 0, 18 : 17, 18 : 0, 11-methyl 18 : 16, 11-methyl 20 : 16, 20 : 17, 22 : 0, 22 : 1 and the hydroxy fatty acids 3-OH 14 : 0, 3-OH 16 : 0 (ester-linked), 3-OH 18 : 0, 3-OH 20 : 1 and 3-OH 20 : 0, all of which are amide-linked. The DNA G+C value was 56 mol%. Comparative analysis of -2 subgroup 16S rRNA gene sequences showed that the type species of the genus , , is only distantly related to (95.3 % sequence similarity). Based on the combination of the 16S rRNA gene sequence data, a detailed chemotaxonomic study and the biochemical and physiological properties of members of the genera , and , it is proposed that , , are transferred to a new genus, gen. nov., as comb. nov., comb. nov. and comb. nov. The type species of the new genus is sp. nov., with strain DFL-11 (=DSM 17067=NCIMB 14079) as the type strain. The genes of the photosynthesis reaction centre were shown to be present in some, but not all, species of the new genus and they were identified for the first time in . In accordance with the new data collected in this study, emended descriptions are provided for the genera , and .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64821-0
2007-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/5/1095.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64821-0&mimeType=html&fmt=ahah

References

  1. Allgaier M., Uphoff H., Felske A., Wagner-Döbler I. 2003; Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 69:5051–5059 [CrossRef]
    [Google Scholar]
  2. Biebl H., Wagner-Döbler I. 2006; Growth and bacteriochlorophyll a formation in taxonomically diverse aerobic anoxygenic phototrophic bacteria in chemostat culture: influence of light regimen and starvation. Process Biochem 41:2153–2159 [CrossRef]
    [Google Scholar]
  3. Biebl H., Allgaier M., Tindall B. J., Koblizek M., Lünsdorf H., Pukall R., Wagner-Döbler I. 2005; Dinoroseobacter shibae gen. nov., sp. nov. a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 55:1089–1096 [CrossRef]
    [Google Scholar]
  4. Biebl H., Tindall B. J., Pukall R., Lünsdorf H., Allgaier M., Wagner-Döbler I. 2006; Hoeflea phototrophica sp. nov., a new marine aerobic Alphaproteobacterium that forms bacteriochlorophyll a . Int J Syst Evol Microbiol 56:821–826 [CrossRef]
    [Google Scholar]
  5. Borsodi A. K., Micsinai A., Kovács G., Tóth E., Schumann P., Kovács A. L., Böddi B., Márialigeti K. 2003; Pannonibacter phragmitetus gen. nov., sp. nov. a novel alkalitolerant bacterium isolated from decomposing reed rhizomes in a Hungarian soda lake. Int J Syst Evol Microbiol 53:555–561 [CrossRef]
    [Google Scholar]
  6. Carballeira N. M., Sostre A., Stefanov K., Popov S., Kujumgiev A., Dimitrova-Konaklieva S., Tosteson C. G., Tosteson T. R. 1997; The fatty acid composition of a Vibrio alginolyticus associated with the alga Cladophora coelothrix . Identification of the novel 9-methyl-10-hexadecenoic acid. Lipids 32:1271–1275 [CrossRef]
    [Google Scholar]
  7. Carballeira N. M., Emiliano A., Sostre A., Restituyo J. A., González I. M., Colón G. M., Tosteson C. G., Tosteson T. R. 1998; Fatty acid composition of bacteria associated with the toxic dinoflagellate Ostreopsis lenticularis and with Caribbean Palythoa species. Lipids 33:627–632 [CrossRef]
    [Google Scholar]
  8. Clayton R. K. 1963; Absorption spectra of photosynthetic bacteria and their chlorophylls. In Bacterial Photosynthesis pp  495–500 Edited by Gest H., San Pietro A., Vernon L. P. Yellow Springs: Antioch Press;
    [Google Scholar]
  9. Couderc F. 1995; Gas chromatography/tandem mass spectrometry as an analytical tool for the identification of fatty acids. Lipids 30:691–699 [CrossRef]
    [Google Scholar]
  10. Donachie S. P., Bowman J. P., Alam M. 2006; Nesiotobacter exalbescens gen. nov., sp. nov. a moderately thermophilic Alphaproteobacterium from an Hawaiian hypersaline lake. Int J Syst Evol Microbiol 56:563–567 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 1993 phylip (phylogenetic inference package) version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  12. Francke W., Schulz S., Sinnwell V., König W. A., Roisin Y. 1989; Epoxytetrahydroedulan, a new terpenoid from the hairpencils of Euploea (Lep. Danainae) butterflies. Liebigs Ann Chem 12:1195–1201
    [Google Scholar]
  13. Fukunaga Y., Kurahashi M., Tanaka K., Yanagi K., Yokota A., Harayama S. 2006; Pseudovibrio ascidiaceicola sp. nov., isolated from ascidians (sea squirts. Int J Syst Evol Microbiol 56:343–347 [CrossRef]
    [Google Scholar]
  14. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. 1981 Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. Golyshina O. V., Pivovarova T. A., Karavaiko G. I., Kondrateva T. F., Moore E. R. B., Abraham W.-R., Lünsdorf H., Timmis K. N., Yakimov M. M., Golyshin P. N. 2000 Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea . Int J Syst Evol Microbiol 50, 997–1006 [CrossRef]
  16. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  17. Harashima K., Shiba T., Murata N. 1989 Aerobic Photosynthetic Bacteria . Japan Scientific Societies Press Berlin: Springer;
    [Google Scholar]
  18. Harvey D. J. 1982; Picolinyl esters as derivatives for the structural determination of long chain branched and unsaturated fatty acids. Biomed Mass Spectrom 9:33–38 [CrossRef]
    [Google Scholar]
  19. Kerger B. D., Nichols P. D., Antworth C. P., Sand W., Bock E., Cox J. C., Langworthy T. A., White D. C. 1986; Signature fatty acids in the polar lipids of acid-producing Thiobacillus spp. methoxy, cyclopropyl, alpha-hydroxy-cyclopropyl and branched and normal monoenoic fatty acids. FEMS Microbiol Ecol 38:67–77 [CrossRef]
    [Google Scholar]
  20. Kim B.-C., Park J. R., Bae J.-W., Rhee S.-K., Kim K. H., Oh J.-W., Park Y.-H. 2006; Stappia marina sp. nov., a marine bacterium isolated from the Yellow Sea. Int J Syst Evol Microbiol 56:75–79 [CrossRef]
    [Google Scholar]
  21. King G. M. 2003; Molecular and culture-based analyses of aerobic carbon monoxide oxidizer diversity. Appl Environ Microbiol 69:7257–7265 [CrossRef]
    [Google Scholar]
  22. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Schumann P., Hirsch P. 1999; Roseovarius tolerans gen. nov., sp. nov. a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49:137–147 [CrossRef]
    [Google Scholar]
  23. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T. Jr, Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M. 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  25. Murray R. G. E., Brenner D. J., Colwell R. R., De Vos P., Goodfellow M., Grimont P. A. D., Pfennig N., Stackebrandt E., Zavarzin G. A. 1990; Report of the ad-hoc-committee on approaches to taxonomy within the Proteobacteria. Int J Syst Bacteriol 40:213–215 [CrossRef]
    [Google Scholar]
  26. Nishimura Y., Muroga Y., Saitoh S., Shiba T., Takamiya K., Shioi Y. 1994; DNA relatedness and chemotaxonomical feature of aerobic bacteriochlorophyll-containing bacteria isolated from the coast of Australia. J Gen Appl Microbiol 40:287–296 [CrossRef]
    [Google Scholar]
  27. Pfennig N., Trüper H. G. 1992; The family Chromatiaceae . In The Prokaryotes , 2nd edn. pp  3200–3221 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. Berlin: Springer;
    [Google Scholar]
  28. Pradella S., Allgaier M., Hoch C., Päuker O., Stackebrandt E., Wagner-Döbler I. 2004; Genome organization and localization of the pufLM genes of the photosynthesis reaction center in phylogenetically diverse marine Alphaproteobacteria . Appl Environ Microbiol 70:3360–3369 [CrossRef]
    [Google Scholar]
  29. Pujalte M. J., Macian M. C., Arahal D. R., Garay E. 2005; Stappia alba sp. nov., isolated from Mediterranean oysters. Syst Appl Microbiol 28:672–678 [CrossRef]
    [Google Scholar]
  30. Quan Z.-X., Bae H.-S., Baek J.-H., Chen W.-F., Im W.-T., Lee S.-T. 2005; Rhizobium daejeonense sp. nov., isolated from a cyanide treatment bioreactor. Int J Syst Evol Microbiol 55:2543–2549 [CrossRef]
    [Google Scholar]
  31. Rathgeber Ch., Beatty J. T., Yurkov V. V. 2004; Aerobic phototrophic bacteria: new evidence for the diversity, ecological importance and applied potential of this previously overlooked group. Photosynth Res 81:113–128 [CrossRef]
    [Google Scholar]
  32. Rontani J.-F., Christodoulou S., Koblizek M. 2005; GC-MS structural characterization of fatty acids from marine aerobic anoxygenic phototrophic bacteria. Lipids 40:97–108 [CrossRef]
    [Google Scholar]
  33. Rüger H. J., Höfle M. G. 1992; Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp.nov., nom rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev.. Int J Syst Bacteriol 42133–143 [CrossRef]
    [Google Scholar]
  34. Sato K. 1978; Bacteriochlorophyll formation by facultative methylotrophs, Protaminobacter ruber and Pseudomonas AM 1. FEBS Lett 85:207–210 [CrossRef]
    [Google Scholar]
  35. Scribe P., Guezennec J., Dagaut J., Pepe C., Saliot A. 1988; Identification of the position and the stereochemistry of the double bond in monounsaturated fatty acid methyl esters by gas chromatography/mass spectrometry of dimethyl disulfide derivatives. Anal Chem 60:928–931 [CrossRef]
    [Google Scholar]
  36. Shiba T., Shioi Y., Takamiya I. K., Sutton D. C., Wilkinson C. R. 1991; Distribution and physiology of aerobic bacteria containing bacteriochlorophyll a on the east and west coasts of Australia. Appl Environ Microbiol 57:295–300
    [Google Scholar]
  37. Shieh W. Y., Lin Y. T., Jean W. D. 2004; Pseudovibrio denitrificans gen. nov., sp. nov. a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. Int J Syst Evol Microbiol 54:2307–2312 [CrossRef]
    [Google Scholar]
  38. Stapp C., Knösel D. 1954; Zur Genetik sternbildender Bakterien. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 2 108:243–259
    [Google Scholar]
  39. Suzuki T., Muroga Y., Takahama M., Nishimura Y. 2000; Roseibium denhamense gen. nov., sp. nov. and Roseibium hamelinense sp. nov. aerobic bacteriochlorophyll-containing bacteria isolated from the east and west coasts of Australia. Int J Syst Evol Microbiol 50:2151–2156 [CrossRef]
    [Google Scholar]
  40. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D. W. 2000; Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium , Bradyrhizobium , Mesorhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801 [CrossRef]
    [Google Scholar]
  41. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  42. Uchino Y., Hirata A., Yakota A., Sugiyama J. 1998; Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen.nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov.,Ruegeria algicola comb. nov., and Ahrensia kieliensis gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 44201–210 [CrossRef]
    [Google Scholar]
  43. Wagner-Döbler I., Biebl H. 2006; Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol 60:255–280 [CrossRef]
    [Google Scholar]
  44. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on the reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  45. Yakimov M. M., Golyshin P. N., Lang S., Moore E. R. B., Abraham W.-R., Lünsdorf H., Timmis K. N. 1998; Alcanivorax borkumensis gen nov., sp. nov., a new hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348 [CrossRef]
    [Google Scholar]
  46. Yurkov V. V., Beatty J. T. 1998; Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724
    [Google Scholar]
  47. Yurkov V. V., van Gemerden H. 1993; Impact of light/dark regimen on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum . Arch Microbiol 159:84–89 [CrossRef]
    [Google Scholar]
  48. Yurkov V. V., Krassilnikova E. N., Gorlenko V. N. 1993; Effect of light and oxygen on the metabolism of the aerobic bacterium Erythromicrobium sibiricum . Microbiology (English translation of Mikrobiologiya ) 62:35–38
    [Google Scholar]
  49. Yurkov V., Jappé J., Verméglio A. 1996; Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Appl Environ Microbiol 62:4195–4198
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64821-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64821-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error