1887

Abstract

Bacterial isolates obtained from polychlorophenol-contaminated sites in Finland (strain K101) and from a Dutch drinking water well (strain A175) were characterized taxonomically. 16S rRNA gene sequence analysis, determination of DNA G+C content, physiological characterization, estimation of the ubiquinone and polar lipid patterns and fatty acid content revealed that strains K101 and A175 were similar to RW1 but also showed pronounced differences. The DNA G+C contents of the two novel strains were 63.6 and 66.1 mol%, respectively. On the basis of these results, two novel species of the genus are described, for which the names sp. nov. [type strain A175 (=DSM 13477=CCUG 53463)] and sp. nov. [type strain K101 (=DSM 13665=CCUG 53462)] are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64835-0
2007-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/8/1740.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64835-0&mimeType=html&fmt=ahah

References

  1. Abraham W.-R., Meyer H., Lindholst S., Vancanneyt M., Smit J. 1997; Phospho- and sulfolipids as biomarkers of Caulobacter sensu lato, Brevundimonas and Hyphomonas . Syst Appl Microbiol 20:522–539 [CrossRef]
    [Google Scholar]
  2. Abraham W.-R., Stroempl C., Meyer H., Lindholst S., Moore E. R. B., Christ R., Vancanneyt M., Tindall B., Bennasar A. other authors 1999 Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter . Int J Syst Bacteriol 49, 1053–1073. [CrossRef]
  3. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [CrossRef]
    [Google Scholar]
  4. Altschul S. F., Gish W., Miller W., Meyers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  5. Balkwill D. L., Drake G. R., Reeves R. H., Fredrickson J. K., White D. C., Ringelberg D. B., Chandler D. P., Romine M. F., Kennedy D. W., Spadoni C. M. 1997 Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 47191–201 [CrossRef]
  6. Blasco R., Wittich R.-M., Mallavarapu M., Timmis K. N., Pieper D. H. 1995; From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J Biol Chem 270:29229–29235 [CrossRef]
    [Google Scholar]
  7. Busse H.-J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [CrossRef]
    [Google Scholar]
  8. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  9. Busse H.-J., Kämpfer P., Denner E. B. M. 1999; Chemotaxonomic characterisation of Sphingomonas . J Ind Microbiol Biotechnol 23:242–251 [CrossRef]
    [Google Scholar]
  10. Busse H.-J., Hauser E., Kämpfer P. 2005; Description of two novel species, Sphingomonas abaci sp. nov., and Sphingomonas panni sp. nov.. Int J Syst Evol Microbiol 55:2565–2569 [CrossRef]
    [Google Scholar]
  11. Denner E. B. M., Kämpfer P., Busse H.-J., Moore E. R. B. 1999; Reclassification of Pseudomonas echinoides Heumann 1962, 343AL, in the genus Sphingomonas as Sphingomonas echinoides comb. nov. Int J Syst Bacteriol 49:1103–1109 [CrossRef]
    [Google Scholar]
  12. Denner E. B. M., Paukner S., Kämpfer P., Moore E. R. B., Abraham W. R., Busse H.-J., Wanner G., Lubitz W. 2001; Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int J Syst Evol Microbiol 51:827–841 [CrossRef]
    [Google Scholar]
  13. Fredrickson H. L., Cappenberg T. E., De Leeuw J. 1986; Polar lipid ester-linked fatty acid composition of Lake Vechten seston: an ecological application of lipid analysis. FEMS Microbiol Ecol 38:381–396 [CrossRef]
    [Google Scholar]
  14. Geueke B., Busse H.-J., Fleischmann T., Kämpfer P., Kohler H.-P. E. 2007; Description of Sphingosinicella xenopeptidilytica sp. nov., a β -peptide-degrading species, and emended descriptions of the genus Sphingosinicella and the species Sphingosinicella microcystinivorans . Int J Syst Evol Microbiol 57:107–113 [CrossRef]
    [Google Scholar]
  15. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology . pp 664–666 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  16. Junca H., Pieper D. H. 2004; Functional gene diversity analysis in BTEX contaminated soils by means of PCR-SSCP DNA fingerprinting: comparative diversity assessment against bacterial isolates and PCR-DNA clone libraries. Environ Microbiol 6:95–110
    [Google Scholar]
  17. Ka J. O., Holben W. E., Tiedje J. M. 1994; Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria isolated from 2,4-D-treated field soils. Appl Environ Microbiol 60:1106–1115
    [Google Scholar]
  18. Kämpfer P., Altwegg M. 1992; Numerical classification and identification of Aeromonas genospecies. J Appl Bacteriol 72:341–351 [CrossRef]
    [Google Scholar]
  19. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [CrossRef]
    [Google Scholar]
  20. Kämpfer P., Bark K., Busse H.-J., Auling G., Dott W. 1992; Numerical and chemotaxonomy of polyphosphate accumulating Acinetobacter strains with high polyphosphate : AMP phosphotransferase (PPAT) activity. Syst Appl Microbiol 15:409–419 [CrossRef]
    [Google Scholar]
  21. Kämpfer P., Denner E. B. M., Meyer S., Moore E. R. B., Busse H.-J. 1997; Classification of ‘ Pseudomonas azotocolligans ’ Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47:577–583 [CrossRef]
    [Google Scholar]
  22. Kanz C., Aldebert P., Althorpe N., Baker W., Baldwin A., Bates K., Browne P., van den Broek A., Castro M. other authors 2005; The EMBL nucleotide sequence database. Nucleic Acids Res 33:D29–D33
    [Google Scholar]
  23. Karlson U., Rojo F., van Elsas J. D., Moore E. 1996; Genetic and serological evidence for the recognition of four pentachlorophenol-degrading bacterial strains as a species of the genus Sphingomonas . Syst Appl Microbiol 18:539–548
    [Google Scholar]
  24. Konig C., Eulberg D., Groning J., Lakner S., Seibert V., Kaschabek S. R., Schlömann M. 2004; A linear megaplasmid, p1CP, carrying the genes for chlorocatechol catabolism of Rhodococcus opacus 1CP. Microbiology 150:3075–3087 [CrossRef]
    [Google Scholar]
  25. Kosako Y., Yabuuchi E., Naka T., Fujiwara N., Kobayashi K. 2000; Proposal of Sphingomonadaceae fam. nov., consisting of Sphingomonas Yabuuchi et al. 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al. 1997, with the type genus Sphingomonas Yabuuchi et al. 1990. Microbiol Immunol 44:563–575 [CrossRef]
    [Google Scholar]
  26. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  27. Männistö M. K., Tiirola M. A., Salkinoja-Salonen M. S., Kulomaa M. S., Puhakka J. A. 1999; Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater. Arch Microbiol 171:189–197 [CrossRef]
    [Google Scholar]
  28. Maruyama T., Park H.-D., Ozawa K., Tanaka Y., Sumino T., Hamana K., Hiraishi A., Kato K. 2006; Sphingosinicella microcystinivorans gen. nov., sp. nov. a microcystin-degrading bacterium. Int J Syst Evol Microbiol 5685–89 [CrossRef]
    [Google Scholar]
  29. Moore E. R. B., Wittich R.-M., Fortnagel P., Timmis K. N. 1993; 16S ribosomal RNA gene sequence characterization and phylogenetic analysis of a dibenzo- p -dioxin-degrading isolate within the new genus Sphingomonas . Lett Appl Microbiol 17:115–118 [CrossRef]
    [Google Scholar]
  30. Nikodem P., Hecht V., Schlömann M., Pieper D. H. 2003; New bacterial pathway for 4- and 5-chlorosalicylate degradation via 4-chlorocatechol and maleylacetate in Pseudomonas sp. strain MT1. J Bacteriol 185:6790–6800 [CrossRef]
    [Google Scholar]
  31. Nohynek L. J., Nurmiaho-Lassila E.-L., Suhonen E. L., Busse H.-J., Mohammadi M., Hantula J., Salkinoja-Salonen M. S. 1996a; Description of chlorophenol-degrading Pseudomonas sp. strains KF1T, KF3 and NKF1 as a new species of the genus Sphingomonas, Sphingomonas subarctica sp. nov. Int J Syst Bacteriol 46:1042–1055 [CrossRef]
    [Google Scholar]
  32. Nohynek L. J., Suhonen E. L., Nurmiaho-Lassila E.-L., Hantula J., Salkinoja-Salonen M. S. 1996b; Description of four pentachlorophenol-degrading bacterial strains as Sphingomonas chlorophenolica sp. nov. Syst Appl Microbiol 18:527–538
    [Google Scholar]
  33. Pal R., Bhasin V. K., Lal R. 2006; Proposal to reclassify [ Sphingomonas ] xenophaga Stolz et al. 2000 and [ Sphingomonas ] taejonensis Lee etal. 2001 as Sphingobium xenophagum comb. nov. and Sphingopyxis taejonensis comb. nov., respectively. Int J Syst Evol Microbiol 56:667–670 [CrossRef]
    [Google Scholar]
  34. Schraa G., Boone M. L., Jetten M. S. M., van Nerven A. R. W., Colberg P. J., Zehnder A. J. B. 1986; Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175. Appl Environ Microbiol 52:1374–1381
    [Google Scholar]
  35. Stolz A., Schmidt C., Denner E. B. M., Busse H.-J., Egli T., Kämpfer P. 2000; Description of Sphingomonas xenophaga sp. nov. for strains BN6T and N,N which degrade xenobiotic aromatic compounds. Int J Syst Evol Microbiol 50:35–41 [CrossRef]
    [Google Scholar]
  36. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis , on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  37. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  38. Tiirola M. A., Busse H.-J., Kämpfer P., Männistö M. K. 2005; Novosphingobium lentum sp. nov., a psychrotolerant bacterium from a polychlorophenol bioremediation process. Int J Syst Evol Microbiol 55:583–588 [CrossRef]
    [Google Scholar]
  39. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  40. Ventosa A., Marquez M. C., Kocur M., Tindall B. J. 1993; Comparative study of ‘ Micrococcus sp.’ strains CCM 168 and CCM 1405 and members of the genus Salinicoccus . Int J Syst Bacteriol 43:245–248 [CrossRef]
    [Google Scholar]
  41. White D. C., Sutton S. D., Ringelberg D. B. 1996; The genus Sphingomonas : physiology and ecology. Curr Opin Biotechnol 7:301–306 [CrossRef]
    [Google Scholar]
  42. Wilson K. 1994; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp 241–245 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: John Wiley & Sons Inc;
    [Google Scholar]
  43. Wittich R.-M., Strömpl C., Moore E. R. B., Blasco R., Timmis K. N. 1999; Interaction of Sphingomonas and Pseudomonas strains in the degradation of chlorinated dibenzofurans. J Ind Microbiol Biotechnol 23:353–358 [CrossRef]
    [Google Scholar]
  44. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen.nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov.,Sphingomonas adhaesiva sp. nov., Sphingomonascapsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119 [CrossRef]
    [Google Scholar]
  45. Yabuuchi E., Yamamoto H., Terakubo S., Okamura N., Naka T., Fujiwara N., Kobayashi K., Kosako Y., Hiraishi A. 2001; Proposal of Sphingomonas wittichii sp. nov. for strain RW1T, known as a dibenzo- p -dioxin metabolizer. Int J Syst Evol Microbiol 51:281–292
    [Google Scholar]
  46. Zipper C., Nickel K., Angst W., Kohler H. P. 1996; Complete microbial degradation of both enantiomers of the chiral herbicide mecoprop [(RS)-2-(4-chloro-2-methylphenoxy)-propionic acid] in an enantioselective manner by Sphingomonas herbicidovorans sp. nov.. Appl Environ Microbiol 62:4318–4322
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64835-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64835-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error