1887

Abstract

A sulfate-reducing enrichment culture originating from coastal marine sediment of the eutrophic Tokyo Bay, Japan, was successfully established with Casamino acids as a substrate. A thiosulfate reducer, strain C/G2, was isolated from the enrichment culture after further enrichment with glutamate. Cells of strain C/G2 were non-motile rods (0.6–0.8 μm×2.2–4.8 μm) and were found singly or in pairs and sometimes in short chains. Spores were not formed. Cells of strain C/G2 stained Gram-negatively, despite possessing Gram-positive cell walls. The optimum temperature for growth was 28–30 °C, the optimum pH was around 7.8 and the optimum salt concentration was 20–30 g l. Lactate, pyruvate, serine, cysteine, threonine, glutamate, histidine, lysine, arginine, Casamino acids, peptone and yeast extract were fermented as single substrates and no sugar was used as a fermentative substrate. A Stickland reaction was observed with some pairs of amino acids. Fumarate, alanine, proline, phenylalanine, tryptophan, glutamine and aspartate were utilized only in the presence of thiosulfate. Strain C/G2 fermented glutamate to H, CO, acetate and propionate. Thiosulfate and elemental sulfur were reduced to sulfide. Sulfate, sulfite and nitrate were not utilized as electron acceptors. The growth of strain C/G2 on Casamino acids or glutamate was enhanced by co-culturing with sp. isolated from the original mixed culture enriched with Casamino acids. The DNA G+C content of strain C/G2 was 41.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain C/G2 formed a distinct cluster with species of the genus . The closest relative was (with a gene sequence similarity of 91 %). On the basis of its phylogenetic and phenotypic properties, strain C/G2 (=JCM 13356=NBRC 101112=DSM 17477) is proposed as representing a new genus and novel species, gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64882-0
2007-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/10/2320.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64882-0&mimeType=html&fmt=ahah

References

  1. Baena S., Fardesu M.-L., Labat M., Ollivier B., Garcia J.-L., Patel B. K. C. 1998; Desulfovibrio aminophilus sp. nov., a novel amino acid degrading and sulfate reducing bacterium from an anaerobic dairy wastewater lagoon. Syst Appl Microbiol 21:498–504 [CrossRef]
    [Google Scholar]
  2. Breitenstein A., Wiegel J., Haertig C., Weiss N., Andeesen J. R., Lechner U. 2002 Reclassification of Clostridium hydroxybenzoicum as Sedimentibacter hydroxybenzoicus gen.nov., comb. nov., and description of Sedimentibacter saalensis sp. nov. Int J Syst Evol Microbiol 52801–807 [CrossRef]
  3. Burdige D. 1989; The effects of sediment slurrying on microbial processes, and the role of amino acids as substrates for sulfate reduction in anoxic marine sediments. Biogeochemistry 8:1–23 [CrossRef]
    [Google Scholar]
  4. Burdige D. J. 1991; Microbial processes affecting alanine and glutamic acid in anoxic marine sediments. FEMS Microbiol Lett 85:211–232 [CrossRef]
    [Google Scholar]
  5. Christensen D. 1984; Determination of substrates oxidized by sulfate reduction in intact cores of marine sediments. Limnol Oceanogr 29:189–192 [CrossRef]
    [Google Scholar]
  6. Cline J. D. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458 [CrossRef]
    [Google Scholar]
  7. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium : proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826 [CrossRef]
    [Google Scholar]
  8. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology . pp 21–33 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society of Microbiology;
  9. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  10. Finster K., Thomsen T. R., Ramsing N. B. 2001 Desulfomusa hansenii gen. nov., sp. nov., a novel marine propionate-degrading, sulfate-reducing bacterium isolated from Zostera marina root. Int J Syst Evol Microbiol 512055–2061 [CrossRef]
  11. Fukui M., Suh J., Yonezawa Y., Urushigawa Y. 1997; Major substrates for microbial sulfate reduction in the sediments of Ise Bay, Japan. Ecol Res 12:201–209 [CrossRef]
    [Google Scholar]
  12. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127 [CrossRef]
    [Google Scholar]
  13. Hansen L. S., Blackburn T. H. 1995; Amino acid degradation by sulfate-reducing bacteria: evaluation of four methods. Limnol Oceanogr 40:502–510 [CrossRef]
    [Google Scholar]
  14. Hansen L. S., Holmer M., Blackburn T. H. 1993; Mineralization of organic nitrogen and carbon (fish food) added to anoxic sediment microcosms: role of sulphate reduction. Mar Ecol Prog Ser 102:199–204 [CrossRef]
    [Google Scholar]
  15. Hernández-Eugenio G., Fardeau M.-L., Cayol J.-L., Patel B. K. C., Thomas P., Macarie H., Garcia J.-L., Ollivier B. 2002a; Sporanaerobacter acetigenes gen. nov., sp. nov., a novel acetigenic, facultatively sulfur-reducing bacterium. Int J Syst Evol Microbiol 52:1217–1223 [CrossRef]
    [Google Scholar]
  16. Hernández-Eugenio G., Fardeau M.-L., Cayol J.-L., Patel B. K. C., Macarie H., Garcia J.-L., Ollivier B. 2002b; Clostridium thiosulfatireducens sp. nov., a proteolytic, thiosulfate- and sulfur-reducing bacterium isolated from an upflow anaerobic sludge blanket (USAB) reactor. Int J Syst Evol Microbiol 52:1461–1468 [CrossRef]
    [Google Scholar]
  17. Hiraishi A. 1992; Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15:210–213 [CrossRef]
    [Google Scholar]
  18. Hoshi J., Ogawa H., Ogura N. 1994; The amino acid distribution and behavior of different particle sizes in surface waters of the estuarine and inner part of Tokyo Bay. Chikyukagaku (Geochemistry 28:1–14 (in Japanese with English summary
    [Google Scholar]
  19. Janssen P. H., Barea H. 1989; Rapid determination of amino acid concentrations in microbiological media: evaluation of Borchers' cuprizone method. J Microbiol Methods 10:311–316 [CrossRef]
    [Google Scholar]
  20. Jørgensen B. B. 1982; Mineralization of organic matter in the sea bed – the role of sulphate reduction. Nature 296:643–645 [CrossRef]
    [Google Scholar]
  21. Kamagata Y., Mikami E. 1991; Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41:191–196 [CrossRef]
    [Google Scholar]
  22. MacInerney M. J. 1988; Anaerobic hydrolysis and fermentation of fats and proteins. In Biology of Anaerobic Microorganisms pp 373–415 Edited by Zehnder A. J. B. New York: John Wiley & Sons;
    [Google Scholar]
  23. Magot M., Ravot G., Campaignolle X., Ollivier B., Patel B. K. C., Fardeau M.-L., Thomas P., Crolet J.-L., Garcia J.-L. 1997; Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int J Syst Bacteriol 47:818–824 [CrossRef]
    [Google Scholar]
  24. Mechichi T., Fardeau M.-L., Labat M., Garcia J.-L., Verhé F., Patel B. K. C. 2000; Clostridium peptidivorans sp. nov., a peptide-fermenting bacterium from an olive mill wastewater treating digester. Int J Syst Evol Microbiol 50:1259–1264 [CrossRef]
    [Google Scholar]
  25. Parkes R. J., Gibson G. R., Mueller-Harvey I., Buckingham W. J., Herbert R. J. 1989; Determination of the substrates for sulphate-reducing bacteria within marine and estuarine sediments with different rates of sulphate reduction. J Gen Microbiol 135:175–187
    [Google Scholar]
  26. Parshina S. N., Kleerebezem R., Sanz J. L., Lettinga G., Nozhevnikova A. N., Kostrikina N. A., Lysenko A. M., Stams A. J. M. 2003 Soehngenia saccharolytica gen. nov., sp. nov. and Clostridium amygdalinum sp. nov., two novel anaerobic, benzaldehyde-converting bacteria. Int J Syst Evol Microbiol 53, 1791–1799 [CrossRef]
  27. Parsons T. R., Stephens K., Strickland J. D. H. 1961; On the chemical composition of eleven species of marine phytoplankters. J Fish Res Board Can 18:1001–1016 [CrossRef]
    [Google Scholar]
  28. Plugge C. M., Zoetendal E. G., Stams A. J. M. 2000; Caloramator coolhaasii sp. nov., a glutamate-degrading, moderately thermophilic anaerobe. Int J Syst Evol Microbiol 50:1155–1162 [CrossRef]
    [Google Scholar]
  29. Purdy K. J., Nedwell D. B., Embley T. M., Takii S. 1997; Use of 16S rRNA-targeted oligonucleotide probes to investigate the occurrence and selection of sulfate-reducing bacteria in response to nutrient addition to sediment slurry microcosms from a Japanese estuary. FEMS Microbiol Ecol 24:221–234 [CrossRef]
    [Google Scholar]
  30. Ravot G., Magot M., Fardeau M.-L., Patel B. K. C., Thomas P., Garcia J.-L., Ollivier B. 1999; Fusibacter paucivorans gen. nov., sp. nov., an anaerobic, thiosulfate-reducing bacterium from an oil-producing well. Int J Syst Bacteriol 49:1141–1147 [CrossRef]
    [Google Scholar]
  31. Rees G. N., Harfoot C. G., Sheehy A. J. 1998; Amino acid degradation by the mesophilic sulfate-reducing bacterium Desulfobacterium vacuolatum . Arch Microbiol 169:76–80
    [Google Scholar]
  32. Saitou N., Nei M. 1987; The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  33. Sass A., Rutters H., Cypionka H., Sass H. 2002; Desulfobulbus mediterraneus sp. nov., a sulfate-reducing bacterium growing on mono- and disaccharides. Arch Microbiol 177:468–474 [CrossRef]
    [Google Scholar]
  34. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Bacteriology . pp 409–443 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society of Microbiology;
  35. Sørensen J., Christensen D., Jørgensen B. B. 1981; Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Appl Environ Microbiol 42:5–11
    [Google Scholar]
  36. Stams A. J. M., Hansen T. A. 1984; Fermentation of glutamate and other compounds by Acidaminobacter hydrogenoformans gen. nov., sp. nov. an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulfate-reducing and methanogenic bacteria. Arch Microbiol 137:329–337 [CrossRef]
    [Google Scholar]
  37. Stams A. J. M., Hansen T. A. 1986; Metabolism of l-alanine in Desulfotomaculum ruminis and two marine Desulfovibrio strains. Arch Microbiol 145:277–279 [CrossRef]
    [Google Scholar]
  38. Stams A. J. M., Hansen T. A., Skyring G. W. 1985; Utilization of amino acids as energy substrates by two marine Desulfovibrio strains. FEMS Microbiol Ecol 31:11–15 [CrossRef]
    [Google Scholar]
  39. Surkov A. V., Dubinina G. A., Lysenko A. M., Glöckner F. O., Kuever J. 2001; Dethiosulfovibrio russensis sp. nov., Dethiosulfovibrio marinus sp.nov. and Dethiosulfovibrio acidaminovorans sp. nov., novel anaerobic, thiosulfate- and sulfur-reducing bacteria isolated from ‘ Thiodendron ’ sulfur mats in different saline environments. Int J Syst Evol Microbiol 51:327–337
    [Google Scholar]
  40. Takai K., Moser D. P., Onstott T. C., Spoelstra N., Pfiffner S. M., Dohnalkova A., Fredrickson J. K. 2001; Alkaliphilus transvaalensis gen. nov., sp. nov. an extremely alkaliphilic bacterium isolated from a deep South African gold mine. Int J Syst Evol Microbiol 51:1245–1256
    [Google Scholar]
  41. Takii S. 2003; Amino acids as main substrates for sulfate-reducing bacteria in surface sediment of a eutrophic bay. J Gen Appl Microbiol 49:329–336 [CrossRef]
    [Google Scholar]
  42. Takii S., Tanaka H., Kohata K., Nakamura Y., Ogura H., Takeshita S. 2002; Seasonal changes in sulfate reduction in sediments in the inner part of Tokyo Bay. Microbes Environ 17:10–17 [CrossRef]
    [Google Scholar]
  43. van der Maarel M. J. E. C., van Bergeijk S., van Werkhoven A. F., Laverman A. M., Meijer W. G., Stam W. T., Hansen T. A. 1996; Cleavage of dimethylsulfoniopropionate and reduction of acrylate by Desulfovibrio acrylicus sp. nov. Arch Microbiol 166:109–115 [CrossRef]
    [Google Scholar]
  44. Widdel F., Bak F. 1992; Gram-negative mesotrophic sulfate-reducing bacteria. In The Prokaryotes , 2nd edn. vol 4 pp 3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer-Verlag;
    [Google Scholar]
  45. Winfrey M. R., Ward D. M. 1983; Substrates for sulfate reduction and methane production in intertidal sediments. Appl Environ Microbiol 45:193–199
    [Google Scholar]
  46. Woo P. C. Y., Teng J. L. L., Leung K.-w., Lau S. K. P., Wong M. K. M., Yuen K.-y. 2004; Bacteremia in a patient with colonic carcinoma caused by a novel Sedimentibacter hongkongensis sp. nov. Diagn Microbiol Infect Dis 50:81–87 [CrossRef]
    [Google Scholar]
  47. Zhang X., Mandelco L., Wiegel J. 1994; Clostridium hydroxybenzoicum sp. nov., an amino acid-utilizing, hydroxybenzoate-decarboxylating bacterium isolated from methanogenic freshwater pond sediment. Int J Syst Bacteriol 44:214–222 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64882-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64882-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error