1887

Abstract

An extremely halophilic archaeon belonging to the order was isolated from Fuente de Piedra salt lake, Spain. This strain, designated FP1, was a pleomorphic coccoid, neutrophilic and required at least 15 % (w/v) NaCl for growth. Strain FP1 grew at 37–60 °C, with optimal growth at 50 °C. Mg was not required, but growth was observed with up to 10 % (w/v) MgSO. Polar lipid analysis revealed the presence of mannose-6-sulfate(1-2)-glucose glycerol diether as a major glycolipid. Both CC and CC core lipids were present. The genomic DNA G+C content was 62.0 mol%. Phylogenetic analysis based on comparison of 16S rRNA gene sequences demonstrated that the isolate was most closely related to species of the genus . DNA–DNA reassociation values between strain FP1 and the most closely related species of the genus (, and ) were lower than 29 %. It is therefore considered that strain FP1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is FP1 (=DSM 18328=ATCC BAA-1310).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64895-0
2007-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/7/1499.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64895-0&mimeType=html&fmt=ahah

References

  1. Castillo A. M., Gutierrez M. C., Kamekura M., Xue Y., Ma Y., Cowan D. A., Jones B. E., Grant W. D., Ventosa A. 2006; Natrinema ejinorense sp. nov., isolated from a saline lake in Inner Mongolia, China. Int J Syst Evol Microbiol 56:2683–2687 [CrossRef]
    [Google Scholar]
  2. Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins D. G., Thompson J. D. 2003; Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500 [CrossRef]
    [Google Scholar]
  3. Cui H. L., Tohty D., Zhou P. J., Liu S. J. 2006; Haloterrigena longa sp. nov. and Haloterrigena limicola sp. nov., extremely halophilic archaea isolated from a salt lake. Int J Syst Evol Microbiol 56:1837–1840 [CrossRef]
    [Google Scholar]
  4. De Rosa M., Gambacorta A., Grant W. D., Lanzotti V., Nicolaus B. 1988; Polar lipids and glycine betaine from haloalkaliphilic archaeabacteria. J Gen Microbiol 134:205–211
    [Google Scholar]
  5. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 2004 phylip (phylogeny inference package), version 3.6. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  8. Fendrihan S., Legat A., Pfaffenhuemer M., Gruber C., Weidler G., Gerbl F., Stan-Lotter H. 2006; Extremely halophilic archaea and the issue of long-term microbial survival. Rev Environ Sci Biotechnol 5:203–218 [CrossRef]
    [Google Scholar]
  9. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K. 1998; Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153 [CrossRef]
    [Google Scholar]
  10. Grant W. B. 2004; Introductory chapter: half a lifetime in Soda Lakes. In Halophilic Microorganisms pp  17–22 Edited by Ventosa A. Heidelberg: Springer;
    [Google Scholar]
  11. Halebian S., Harris B., Finegold S. M., Rolfe R. 1981; Rapid method that aids in distinguishing Gram-positive from Gram-negative anaerobic bacteria. J Clin Microbiol 13:444–448
    [Google Scholar]
  12. Kamekura M., Dyall-Smith M. L. 1995; Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba . J Gen Appl Microbiol 41:333–350 [CrossRef]
    [Google Scholar]
  13. Kumar S., Tamura K., Nei M. 2004; mega3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  14. Lanzotti V., Nicolaus B., Tincone A., Grant W. D. 1988; The glycolipid of Halobacterium saccharovorum . FEMS Microbiol Lett 55:223–228 [CrossRef]
    [Google Scholar]
  15. Lanzotti V., Nicolaus B., Tincone A., De Rosa M., Grant W. D., Gambacorta A. 1989; A complex lipid with a cyclic phosphate from the archaebacterium Natronococcus occultus . Biochim Biophys Acta 1001:31–34 [CrossRef]
    [Google Scholar]
  16. Martinez-Canovas M. J., Bejar V., Martinez-Checa F., Quesada E. 2004; Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland wildfowl reserve in Malaga, southern Spain. Int J Syst Evol Microbiol 54:1329–1332 [CrossRef]
    [Google Scholar]
  17. Martinez-Checa F., Bejar V., Llamas I., Del Moral A., Quesada E. 2005; Alteromonas hispanica sp. nov., a polyunsaturated-fatty-acid-producing, halophilic bacterium isolated from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 55:2385–2390 [CrossRef]
    [Google Scholar]
  18. Mata J. A., Bejar V., Llamas I., Arias S., Bressollier P., Tallon R., Urdaci M. C., Quesada E. 2006; Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis . Res Microbiol 157:827–835 [CrossRef]
    [Google Scholar]
  19. McGenity T. J., Gemmell R. T., Grant W. D. 1998; Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom.nov. and Natrinema pallidum nom. nov. Int J Syst Bacteriol 48:1187–1196 [CrossRef]
    [Google Scholar]
  20. Montalvo-Rodriguez R., Lopez-Garriga J., Vreeland R. H., Oren A., Ventosa A., Kamekura M. 2000; Haloterrigena thermotolerans sp. nov., a halophilic archaeon from Puerto Rico. Int J Syst Evol Microbiol 50:1065–1071 [CrossRef]
    [Google Scholar]
  21. Motta A., Romano I., Gambacorta A. 2004; Rapid and sensitive method for osmolyte determination. J Microbiol Methods 58:289–294 [CrossRef]
    [Google Scholar]
  22. Nicolaus B., Manca M. C., Lama L., Esposito E., Gambacorta A. 2001; Lipid modulation by environmental stresses in two models of extremophiles isolated from Antarctica. Polar Biol 24:1–8
    [Google Scholar]
  23. Oren A., Galinski E. A. 1994; Hydrolysis of N ′-benzoyl-arginine- p -nitroanilide stereoisomers as a phenotypic test: a study of Gram-positive halotolerant bacteria. Syst Appl Microbiol 17:7–10 [CrossRef]
    [Google Scholar]
  24. Oren A., Ventosa A., Grant W. D. 1997; Proposal of minimal standards for the description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47:233–238 [CrossRef]
    [Google Scholar]
  25. Oren A., Elevi R., Watanabe S., Ihara K., Corcelli A. 2002; Halomicrobium mukohataei gen. nov., comb. nov. and emended description of Halomicrobium mukohataei . Int J Syst Evol Microbiol 52:1831–1835 [CrossRef]
    [Google Scholar]
  26. Poli A., Esposito E., Lama L., Orlando P., Nicolaus G., de Appolonia F., Gambacorta A., Nicolaus B. 2006; Anoxybacillus amylolyticus sp. nov., a thermophilic amylase producing bacterium isolated from Mount Rittmann (Antarctica). Syst Appl Microbiol 29:300–307 [CrossRef]
    [Google Scholar]
  27. Reed A. J., Lutz R. A., Vetriani C. 2006; Vertical distribution and diversity of bacteria and archaea in sulphide and methane-rich cold seep sediments located at the base of the Florida Escarpment. Extremophiles 10:199–211 [CrossRef]
    [Google Scholar]
  28. Romano I., Manca M. C., Lama L., Nicolaus B., Gambacorta A. 1993; A method for antibiotic assay on Sulfolobales . Biotechnol Tech 7:439–440 [CrossRef]
    [Google Scholar]
  29. Sykes J. 1971; Methods in microbiology. In Centrifugal Techniques for the Isolation and Characterization of Sub-cellular Components from Bacteria . pp  189–193 Edited by Norris J. R., Ribbons D. W. London: Academic Press;
  30. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  31. Tindall B. J. 2003; Taxonomic problems arising in the genera Haloterrigena and Natrinema . Int J Syst Evol Microbiol 53:1697–1698 [CrossRef]
    [Google Scholar]
  32. Ventosa A., Gutiérrez M. C., Kamekura M., Dyall-Smith M. L. 1999; Proposal to transfer Halococcus turkmenicus , Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov. Int J Syst Bacteriol 49:131–136 [CrossRef]
    [Google Scholar]
  33. Wright A. D. 2006; Phylogenetic relationships within the order Halobacteriales inferred from 16S rRNA gene sequences. Int J Syst Evol Microbiol 56:1223–1227 [CrossRef]
    [Google Scholar]
  34. Xin H., Itoh T., Zhou P., Suzuki K., Kamekura M., Nakase T. 2000; Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 50:1297–1303 [CrossRef]
    [Google Scholar]
  35. Xu X. W., Liu S. J., Tohty D., Oren A., Wu M., Zhou P. J. 2005a; Haloterrigena saccharevitans sp. nov., an extremely halophilic archaeon from Xin-Jiang, China. Int J Syst Evol Microbiol 55:2539–2542 [CrossRef]
    [Google Scholar]
  36. Xu X. W., Ren P.-G., Liu S.-J., Wu M., Zhou P. J. 2005b; Natrinema altunense sp. nov., an extremely halophilic archaeon isolated from a salt lake in Altun Mountain in Xin-Jiang, China. Int J Syst Evol Microbiol 55:1311–1314 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64895-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64895-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error