1887

Abstract

Aerobic enrichment at 4 M NaCl, pH 7.5, with methanol as carbon and energy source from sediments of hypersaline chloride–sulfate lakes in Kulunda Steppe (Altai, Russia) resulted in the isolation of a moderately halophilic and obligately methylotrophic bacterium, strain HMT 1. The bacterium grew with methanol and methylamine within a pH range of 6.8–8.2 with an optimum at pH 7.5 and at NaCl concentrations of 0.5–4 M with an optimum at 2 M. In addition to methanol and methylamine, it can oxidize ethanol, formate, formaldehyde and dimethylamine. Carbon is assimilated via the serine pathway. The main compatible solute is glycine betaine. 16S rRNA gene sequence analysis placed the isolate as a new lineage in the family (). It is proposed, therefore, to accommodate this bacterium within a novel genus and species, gen. nov., sp. nov., with HMT 1 (=DSM 15733 =NCCB 100208 =UNIQEM U237) as the type strain. Two strains were obtained in pure culture from sediments of soda lake Magadi in Kenya and the Kulunda Steppe (Russia) on a mineral medium at pH 10 containing 0.6 M total Na using methanol as a substrate. Strain AMT 1 was enriched with methanol, while strain AMT 3 originated from an enrichment culture with CO. The isolates are restricted facultative methylotrophs, capable of growth with methanol, formate and acetate as carbon and energy sources. With methanol, the strains grew within a broad salinity range from 0.3 to 3.5–4 M total Na, with an optimum at 0.5–1 M. The pH range for growth was between 8.3 and 10.5, with an optimum at pH 9.5, which characterized the soda lake isolates as obligate haloalkaliphiles. Carbon is assimilated autotrophically via the Calvin–Benson cycle. Sequence analysis of the gene coding for the key enzyme RuBisCO demonstrated that strain AMT 1 possessed a single gene of the ‘green’ form I, clustering with members of the family . Analysis of the 16S rRNA gene sequence showed that strains AMT 1 and AMT 3 belong to a single species that forms a separate lineage within the family . On the basis of phenotypic and genetic data, the novel haloalkaliphilic methylotrophs are described as representing a novel genus and species, gen. nov., sp. nov. (type strain AMT 1 =DSM 15732 =NCCB 100209 =UNIQEM U238).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64955-0
2007-12-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/12/2762.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64955-0&mimeType=html&fmt=ahah

References

  1. Banciu H., Sorokin D. Y., Rijpstra W. I. C., Sinninghe Damsté J. S., Galinski E. A., Takaichi S., Muyzer G., Kuenen J. G. 2005; Fatty acid, compatible solute and pigment composition of obligately chemolithoautotrophic alkaliphilic sulfur-oxidizing bacteria from soda lakes. FEMS Microbiol Lett 243:181–187 [CrossRef]
    [Google Scholar]
  2. Dedysh S. N., Smirnova K. V., Khmelenina V. N., Suzina N. E., Liesack W., Trotsenko Y. A. 2005; Methylotrophic autotrophy in Beijerinckia mobilis . J Bacteriol 187:3884–3888 [CrossRef]
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  4. Doronina N. V., Braus-Strohmeyer S. A., Leisinger T., Trotsenko Y. A. 1995; Isolation and characterization of a new facultatively methylotrophic bacterium: description of Methylorhabdus multivorans gen. nov., sp. nov. Syst Appl Microbiol 18:92–98 [CrossRef]
    [Google Scholar]
  5. Doronina N. V., Trotsenko Y. A., Tourova T. P. 2000; Methylarcula marina gen. nov, sp. nov. and Methylarcula terricola sp. nov.: novel aerobic, moderately halophilic, facultatively methylotrophic bacteria from coastal saline environments. Int J Syst Evol Microbiol 50:1849–1859
    [Google Scholar]
  6. Doronina N. V., Darmaeva Ts. D., Trotsenko Yu. A. 2001; Novel aerobic methylotrophic isolates from the soda lakes of the southern Transbaikal region. Microbiology English translation of Mikrobiologiia 70:342–348 [CrossRef]
    [Google Scholar]
  7. Doronina N. V., Darmaeva T. D., Trotsenko Y. A. 2003a; Methylophaga alcalica sp. nov., a novel alkaliphilic and moderately halophilic, obligately methylotrophic bacterium from an East Mongolian soda lake. Int J Syst Evol Microbiol 53:223–229 [CrossRef]
    [Google Scholar]
  8. Doronina N. V., Darmaeva T. D., Trotsenko Y. A. 2003b; Methylophaga natronica sp. nov., a new alkaliphilic and moderately halophilic, restricted-facultatively methylotrophic bacterium from soda lake of the Southern Transbaikal region. Syst Appl Microbiol 26:382–389 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.53c. Distributed by the author Department of Genome Sciences, University of Washington; Seattle, USA:
    [Google Scholar]
  10. Galinski E. A., Herzog R. M. 1990; The role of trehalose as a substitute for nitrogen-containing compatible solutes ( Ectothiorhodospira halochloris . Arch Microbiol 153:607–613 [CrossRef]
    [Google Scholar]
  11. Galinski E. A., Trüper H. G. 1994; Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108 [CrossRef]
    [Google Scholar]
  12. Heyer J., Berger U., Hardt M., Dunfield P. F. 2005; Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J Syst Evol Microbiol 55:1817–1826 [CrossRef]
    [Google Scholar]
  13. Joye S. B., Connell T. L., Miller L. G., Oremland R. S., Jellison R. S. 1999; Oxidation of ammonia and methane in an alkaline, saline lake. Limnol Oceanogr 44:178–188 [CrossRef]
    [Google Scholar]
  14. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  15. McDonald I. R., Murrell J. C. 1997; The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 63:3218–3224
    [Google Scholar]
  16. Namsaraev B. B., Zhilina T. N., Kulyrova A. V., Gorlenko V. M. 1999; Bacterial methanogenesis in soda lakes of the Southeastern Transbaikal region. Microbiology English translation of Mikrobiologiia 68,586–591
    [Google Scholar]
  17. Oremland R. S., Marsh L., Deswarais D. L. 1982; Methanogenesis in Big Soda Lake. Appl Environ Microbiol 43:462–468
    [Google Scholar]
  18. Oren A. 2002 Halophilic Microorganisms and their Environments Dordrecht: Kluwer;
    [Google Scholar]
  19. Pfennig N., Lippert K. D. 1966; über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Microbiol 55:245–256 (in German
    [Google Scholar]
  20. Schäfer H., Muyzer G. 2001; Denaturing gradient gel electrophoresis in marine microbial ecology. Methods Microbiol 30:426–468
    [Google Scholar]
  21. Sokolov A. P., Trotsenko Y. A. 1995; Methane consumption in (hyper)saline habitats of Crimea (Ukraine). FEMS Microbiol Ecol 18:299–303 [CrossRef]
    [Google Scholar]
  22. Sorokin D. Yu., Tourova T. P., Kolganova T. V., Sjollema K. A., Kuenen J. G. 2002; Thioalkalispira microaerophila gen. nov., sp.nov., a novel lithoautotrophic, sulfur-oxidizing bacterium from a soda lake. Int J Syst Evol Microbiol 52:2175–2182 [CrossRef]
    [Google Scholar]
  23. Sorokin D. Yu., Gorlenko V. M., Namsaraev B. B., Namsaraev Z. B., Lysenko A. M., Eshinimaev B. Ts., Khmelenina V. N., Trotsenko Y. A., Kuenen J. G. 2004; Prokaryotic communities of the north-eastern Mongolian soda lakes. Hydrobiologia 522:235–248 [CrossRef]
    [Google Scholar]
  24. Sorokin D. Yu., Tourova T. P., Lysenko A. M., Muyzer G. 2006; Culturable diversity of halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology 152:3013–3023 [CrossRef]
    [Google Scholar]
  25. Spiridonova E. M., Berg I. A., Kolganova T. V., Ivanovsky R. N., Kuznetsov B. B., Tourova T. P. 2004; An oligonucleotide primer system for amplification of the ribulose-1,5-bisphosphate carboxylase/oxygenase genes of bacteria of various taxonomic groups. Microbiology English translation of Mikrobiologiia 73:316–325 [CrossRef]
    [Google Scholar]
  26. Trotsenko Y. A., Khmelenina V. N. 2002a; Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177:123–131 [CrossRef]
    [Google Scholar]
  27. Trotsenko Y. A., Khmelenina V. N. 2002b; Biology and osmoadaptation of haloalkalitolerant methanotrophs. Microbiology English translation of Mikrobiologiia 71:123–132 [CrossRef]
    [Google Scholar]
  28. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  29. Vargas C., Kallimanis A., Koukkou A. I., Calderona M. I., Canovas D., Iglesias-Guerrac F., Drainas C., Ventosa A., Nieto J. J. 2005; Contribution of chemical changes in membrane lipids to the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens . Syst Appl Microbiol 28:571–581 [CrossRef]
    [Google Scholar]
  30. Zavarzin G. A., Zhilina T. N., Kevbrin V. V. 1999; The alkaliphilic microbial community and its functional diversity. Microbiology English translation of Mikrobiologiia 68:503–521
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64955-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64955-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error