1887

Abstract

Two Gram-positive, endospore-forming, rod-shaped bacterial strains, HG645 and HG711, were respectively isolated from surface water of a brackish lake and sediment of a fishery harbour in Japan and were subsequently characterized taxonomically using a polyphasic approach. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains HG645 and HG711 are affiliated phylogenetically to the genus , and they exhibit sequence similarities of 95.7–97.3 % to the type strains of species. DNA–DNA relatedness between strain HG645 and the type strain of the phylogenetically related species was less than 10 %. The DNA G+C content of strains HG645 and HG711 were respectively 46.0 and 45.2 mol%. Major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The cell-wall peptidoglycan type (Lys–Glu), major cellular fatty acids (iso-C and anteiso-C) and quinone type (MK-7) of the isolates support their affiliation to the genus . On the basis of phylogenetic analysis and physiological and chemotaxonomic data, the isolates represent a novel species of the genus for which the name sp. nov. is proposed. The type strain is strain HG645 (=MBIC08270=IAM 15429 =KCTC 13119).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64962-0
2007-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/8/1868.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64962-0&mimeType=html&fmt=ahah

References

  1. Claus D., Fahmy F. 1986; Genus Sporosarcina Kluyver and van Niel 1936, 401AL . In Bergey's Manual of Systematic Bacteriology vol 2 pp 1202–1206 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  2. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in micro-dilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  5. Goto K., Omura T., Hara Y., Sadaie Y. 2000; Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus . J Gen Appl Microbiol 46:1–8 [CrossRef]
    [Google Scholar]
  6. Goto K., Mochida K. M., Asahara M., Suzuki M., Yokota A. 2002; Application of the hypervariable region of the 16S rDNA sequence as an index for the rapid identification of species in the genus Alicyclobacillus . J Gen Appl Microbiol 48:243–250 [CrossRef]
    [Google Scholar]
  7. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  8. Kluyver A. J., van Niel C. B. 1936; Prospects for a natural classification of bacteria. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 94:369–403
    [Google Scholar]
  9. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  10. Larkin J. M., Stokes J. L. 1967; Taxonomy of psychrophilic strains of Bacillus . J Bacteriol 94:889–895
    [Google Scholar]
  11. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  12. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  13. Miquel P. 1889; étude sur la fermantation ammoniacale et sur les ferments de l'urée. Ann Microgr 1:506–519 (in French)
    [Google Scholar]
  14. Nakamura L. K. 1984; Bacillus psychrophilus sp. nov., nom. rev.. Int J Syst Bacteriol 34121–123 [CrossRef]
    [Google Scholar]
  15. Reddy G. S. N., Matsumoto G. I., Shivaji S. 2003; Sporosarcina macmurdoensis sp. nov., from a cyanobacterial mat sample from a pond in the McMurdo Dry Valleys, Antarctica. Int J Syst Evol Microbiol 53:1363–1367 [CrossRef]
    [Google Scholar]
  16. Rüger H.-J. 1983; Differentiation of Bacillus globisporus , Bacillus marinus comb. nov., Bacillus aminovorans , and Bacillus insolitus . Int J Syst Bacteriol 33:157–161 [CrossRef]
    [Google Scholar]
  17. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  18. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  19. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Manual of Methods for General and Molecular Bacteriology . pp 607–654 Edited by Gerhardt P. Washington, DC: American Society for Microbiology;
  20. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J. other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  21. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  22. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  23. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  24. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  25. Yoon J.-H., Lee K.-C., Weiss N., Kho Y. H., Kang K. H., Park Y.-H. 2001; Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of the genus Sporosarcina . Int J Syst Evol Microbiol 511079–1086 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64962-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64962-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error