1887

Abstract

A moderately thermophilic, Gram-positive, endospore-forming, sulfate-reducing bacterium was isolated from a fluidized-bed reactor treating acidic water containing metal and sulfate. The strain, designated RE35E1, was rod-shaped and motile. The temperature range for growth was 33–51 °C (optimum 44–46 °C) and the pH range was 6.0–7.5 (optimum pH 6.4–7.3). The strain grew optimally without additional NaCl. The electron acceptors were 10 mM sulfate, thiosulfate and elemental sulfur and 1 mM (but not 10 mM) sulfite. Various alcohols and carboxylic acids were utilized as electron donors. Fermentative growth occurred on pyruvate. The cell wall contained -diaminopimelic acid, and the major respiratory isoprenoid quinone was menaquinone MK-7. The major whole-cell fatty acids were iso-C, iso-C 10 and iso-C. Strain RE35E1 was related to representatives of the genera and , the closest relatives being DSM 17038 (96.3 % 16S rRNA gene sequence similarity) and DSM 5475 (92.0 % similarity). Strain RE35E1 represents a novel species, for which the name sp. nov. is proposed. The type strain is RE35E1 (=DSM 16058=JCM 14019).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65025-0
2008-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/4/833.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65025-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J.(1990). A basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef] [Google Scholar]
  2. Campbell, L. L. & Postgate, J. R.(1965). Classification of the spore-forming sulfate-reducing bacteria. Bacteriol Rev 29, 359–363. [Google Scholar]
  3. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M.(1977). A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef] [Google Scholar]
  4. Collins, M. D. & Jones, D.(1981). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45, 316–354. [Google Scholar]
  5. Cord-Ruwisch, R. & Garcia, J.-L.(1985). Isolation and characterization of an anaerobic benzoate-degrading spore-forming sulfate-reducing bacterium Desulfotomaculum sapomandens sp. nov. FEMS Microbiol Lett 29, 325–330.[CrossRef] [Google Scholar]
  6. Daumas, S., Cord-Ruwisch, R. & Garcia, J. L.(1988).Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water. Antonie Van Leeuwenhoek 54, 165–178.[CrossRef] [Google Scholar]
  7. Fardeau, M.-L., Ollivier, B., Patel, B. K. C., Dwivedi, P., Ragot, M. & Garcia, J.-L.(1995). Isolation and characterization of a thermophilic sulfate-reducing bacterium, Desulfotomaculum thermosapovorans sp. nov. Int J Syst Bacteriol 45, 218–221.[CrossRef] [Google Scholar]
  8. Goorissen, H. P., Boschker, H. T. S., Stams, A. J. M. & Hansen, T. A.(2003). Isolation of thermophilic Desulfotomaculum strains with methanol and sulfite from solfataric mud pools, and characterization of Desulfotomaculum solfataricum sp. nov. Int J Syst Evol Microbiol 53, 1223–1229.[CrossRef] [Google Scholar]
  9. Gregersen, T.(1978). Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5, 123–127.[CrossRef] [Google Scholar]
  10. Groth, I., Schumann, P., Weiss, N., Martin, K. & Rainey, F. A.(1996).Agrococcus jenesis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46, 234–239.[CrossRef] [Google Scholar]
  11. Hagenauer, A., Hippe, H. & Rainey, F. A.(1997).Desulfotomaculum aeronauticum sp. nov., a sporeforming, thiosulfate-reducing bacterium from corroded aluminium alloy in an aircraft. Syst Appl Microbiol 20, 65–71.[CrossRef] [Google Scholar]
  12. Heimbrook, M. E., Wang, W. L. L. & Campbell, G.(1989). Staining bacterial flagella easily. J Clin Microbiol 27, 2612–2615. [Google Scholar]
  13. Kaksonen, A. H., Franzmann, P. D. & Puhakka, J. A.(2003a). Performance and ethanol oxidation kinetics of a sulfate-reducing fluidized-bed reactor treating acidic metal-containing wastewater. Biodegradation 14, 207–217.[CrossRef] [Google Scholar]
  14. Kaksonen, A. H., Riekkola-Vanhanen, M.-L. & Puhakka, J. A.(2003b). Optimization of metal sulfide precipitation in fluidized-bed treatment of acidic wastewater. Water Res 37, 255–266.[CrossRef] [Google Scholar]
  15. Kaksonen, A. H., Franzmann, P. D. & Puhakka, J. A.(2004a). Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Biotechnol Bioeng 86, 332–343.[CrossRef] [Google Scholar]
  16. Kaksonen, A. H., Plumb, J. J., Gibson, J. A. E., Franzmann, P. D. & Puhakka, J. A.(2004b). Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater. FEMS Microbiol Ecol 47, 279–289.[CrossRef] [Google Scholar]
  17. Kaksonen, A. H., Plumb, J. J., Robertson, W. J., Franzmann, P. D., Gibson, J. A. E. & Puhakka, J. A.(2004c). Culturable diversity and community fatty acid profiling of sulfate-reducing fluidized-bed reactors treating acidic, metal-containing wastewater. Geomicrobiol J 21, 1–12.[CrossRef] [Google Scholar]
  18. Kaksonen, A. H., Plumb, J. J., Robertson, W. J., Spring, S., Schumann, P., Franzmann, P. D. & Puhakka, J. A.(2006a). Novel thermophilic sulfate-reducing bacteria from a geothermally active underground mine in Japan. Appl Environ Microbiol 72, 3759–3762.[CrossRef] [Google Scholar]
  19. Kaksonen, A. H., Spring, S., Schumann, P., Kroppenstedt, R. M. & Puhakka, J. A.(2006b).Desulfotomaculum thermosubterraneum sp. nov., a thermophilic sulfate-reducer isolated from an underground mine located in geothermally active area. Int J Syst Evol Microbiol 56, 2603–2608.[CrossRef] [Google Scholar]
  20. Kämpfer, P. & Kroppenstedt, R. M.(1996). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef] [Google Scholar]
  21. Kroppenstedt, R. M.(1985). Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series, vol. 20), pp. 173–199. Edited by M. Goodfellow & D. E. Minnikin. New York: Academic Press.
  22. Kuever, J., Rainey, F. A. & Hippe, H.(1999). Description of Desulfotomaculum sp. Groll as Desulfotomaculum gibsoniae sp. nov. Int J Syst Bacteriol 49, 1801–1808.[CrossRef] [Google Scholar]
  23. Liu, Y., Karnauchow, T. M., Jarrell, K. F., Balkwill, D. L., Drake, G. R., Ringelberg, D., Clarno, R. & Boone, D. R.(1997). Description of two new thermophilic Desulfotomaculum spp., Desulfotomaculum putei sp. nov., from a deep terrestrial subsurface, and Desulfotomaculum luciae sp. nov., from a hot spring. Int J Syst Bacteriol 47, 615–621.[CrossRef] [Google Scholar]
  24. Love, C. A., Patel, B. K. C., Nichols, P. D. & Stackebrandt, E.(1993).Desulfotomaculum australicum, sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst Appl Microbiol 16, 244–251.[CrossRef] [Google Scholar]
  25. Lovley, D. R. & Phillips, E. J. P.(1986). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51, 683–689. [Google Scholar]
  26. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  27. Miller, L. T.(1982). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16, 584–586. [Google Scholar]
  28. Min, H. & Zinder, S. H.(1990). Isolation and characterization of a thermophilic sulfate-reducing bacterium, Desulfotomaculum thermoacetoxidans sp. nov. Arch Microbiol 153, 399–404.[CrossRef] [Google Scholar]
  29. Monciardini, P., Cavaletti, L., Schumann, P., Rohde, M. & Donadio, S.(2003).Conexibacter woesei gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria. Int J Syst Evol Microbiol 53, 569–576.[CrossRef] [Google Scholar]
  30. Nazina, T. N., Ivanova, A. E., Kanchaveli, L. P. & Rozanova, E. P.(1989). A new sporeforming thermophilic methylotrophic sulfate-reducing bacterium, Desulfotomaculum kuznetsovii sp. nov. Microbiology (English translation of Mikrobiologiia) 57, 659–663. [Google Scholar]
  31. Nazina, T. N., Rozanova, E. P., Belyakova, E. V., Lysenko, A. M., Poltaraus, A. B., Tourova, T. P., Osipov, G. A. & Belyaev, S. S.(2005). Description of ‘Desulfotomaculum nigrificans subs. salinus’ as a new species, Desulfotomaculum salinum sp. nov. Microbiology (English translation of Mikrobiologiia) 74, 567–574. [Google Scholar]
  32. Nilsen, R. K., Torsvik, T. & Lien, T.(1996).Desulfotomaculum thermocisternum sp. nov., a sulfate-reducer isolated from a hot North Sea oil reservoir. Int J Syst Bacteriol 46, 397–402.[CrossRef] [Google Scholar]
  33. Parshina, S. N., Sipma, J., Nakashimada, Y., Meint Henstra, A., Smidt, H., Lysenko, A. M., Lens, P. N. L., Lettinga, G. & Stams, A. J. M.(2005).Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100 % CO. Int J Syst Evol Microbiol 55, 2159–2165.[CrossRef] [Google Scholar]
  34. Pikuta, E., Lysenko, A., Suzina, N., Osipov, G., Kuznetsov, B., Tourova, T., Akimenko, V. & Laurinavichius, K.(2000).Desulfotomaculum alkaliphilum sp. nov., a new alkaliphilic, moderately thermophilic, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50, 25–33.[CrossRef] [Google Scholar]
  35. Plugge, C. M., Balk, M. & Stams, A. J. M.(2002).Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxiding, spore-forming bacterium. Int J Syst Evol Microbiol 52, 391–399. [Google Scholar]
  36. Rhuland, L. E., Work, E., Denman, R. F. & Hoare, D. S.(1955). The behavior of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77, 4844–4846.[CrossRef] [Google Scholar]
  37. Sasser, M.(1990). Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20, 16 [Google Scholar]
  38. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  39. Tardy-Jacquenod, C., Magot, M., Patel, B. K., Matheron, R. & Caumette, P.(1998).Desulfotomaculum halophilum sp. nov., a halophilic sulfate-reducing bacterium isolated from oil production facilities. Int J Syst Bacteriol 48, 333–338.[CrossRef] [Google Scholar]
  40. Tasaki, M., Kamagata, Y., Nakamura, K. & Mikami, E.(1991). Isolation and characterization of a thermophilic benzoate-degrading, sulfate-reducing bacterium, Desulfotomaculum thermobenzoicum sp. nov. Arch Microbiol 155, 348–352. [Google Scholar]
  41. Vandieken, V., Knoblauch, C. & Jorgensen, B. B.(2006).Desulfotomaculum arcticum sp. nov., a new spore-forming, moderately thermophilic sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. Int J Syst Evol Microbiol 56, 687–690.[CrossRef] [Google Scholar]
  42. Werkman, C. H. & Weaver, H. J.(1927). Studies in the bacteriology of sulphur stinker spoilage of canned sweet corn. Iowa State Coll J Sci 2, 57–67. [Google Scholar]
  43. Widdel, F. & Pfennig, N.(1977). A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch Microbiol 112, 119–122.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65025-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65025-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error