1887

Abstract

A hyperthermophilic, sulfur-reducing, organo-heterotrophic archaeon, strain OGL-20P, was isolated from ‘black smoker’ chimney material from the Rainbow hydrothermal vent site on the Mid-Atlantic Ridge (36.2°N, 33.9°W). The cells of strain OGL-20P have an irregular coccoid shape and are motile with a single flagellum. Growth was observed within a pH range of 5.0−8.5 (optimum pH 7.0), an NaCl concentration range of 1–5 % (w/v) (optimum 3 %) and a temperature range of 55–94 °C (optimum 83–85 °C). The novel isolate is strictly anaerobic and obligately dependent upon elemental sulfur as an electron acceptor, but it does not reduce sulfate, sulfite, thiosulfate, Fe(III) or nitrate. Proteolysis products (peptone, bacto-tryptone, Casamino acids and yeast extract) are utilized as substrates during sulfur reduction. Strain OGL-20P is resistant to ampicillin, chloramphenicol, kanamycin and gentamicin, but sensitive to tetracycline and rifampicin. The G+C content of the DNA is 52.9 mol%. The 16S rRNA gene sequence analysis revealed that strain OGL-20P is closely related to and related species, but no significant homology by DNA–DNA hybridization was observed between those species and the new isolate. On the basis of physiological and molecular properties of the new isolate, we conclude that strain OGL-20P represents a new separate species within the genus , for which we propose the name sp. nov. The type strain is OGL-20P (=JCM 12859=DSM 14981=ATCC BAA-394).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65057-0
2007-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/7/1612.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65057-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Atomi H., Fukui T., Kanai T., Morikawa M., Imanaka T. 2004; Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. Archaea 1:263–267 [CrossRef]
    [Google Scholar]
  3. Canganella F., Jones W. J., Gambacorta A., Antranikian G. 1998; Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site. Int J Syst Bacteriol 48:1181–1185 [CrossRef]
    [Google Scholar]
  4. Charlou J. L., Donval J. P., Baptiste P. J., Holm N. G. 2002; Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14N, MAR). Chem Geol 191:345–359 [CrossRef]
    [Google Scholar]
  5. Dirmeier R., Keller M., Hafenbradl D., Braun F. J., Rachel R., Burggraf S., Stetter K. O. 1998; Thermococcus acidaminovorans sp. nov., a new hyperthermophilic alkaliphilic archaeon growing on amino acids. Extremophiles 2:109–114 [CrossRef]
    [Google Scholar]
  6. Duffaud G. D., d'Hennezel O. B., Peek A. S., Reysenbach A.-L., Kelly R. M. 1998; Isolation and characterization of Thermococcus barossii , sp. nov., a hyperthermophilic Archaeon isolated from a hydrothermal vent flange formation. Syst Appl Microbiol 21:40–49 [CrossRef]
    [Google Scholar]
  7. Godfroy A., Meunier J.-R., Guézennec J., Lesongeur F., Raguénès G., Rimbault A., Barbier G. 1996; Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the North Fiji Basin. Int J Syst Bacteriol 46:1113–1119 [CrossRef]
    [Google Scholar]
  8. Godfroy A., Lesongeur F., Raguénès G., Quérellou J., Antoine E., Meunier J.-R., Guézennec J., Barbier G. 1997; Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 47:622–626 [CrossRef]
    [Google Scholar]
  9. González J. M., Kato C., Horikoshi K. 1995; Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch Microbiol 164:159–164 [CrossRef]
    [Google Scholar]
  10. González J. M., Sheckells D., Viebahn M., Krupatkina D., Borges K. M., Robb F. T. 1999; Thermococcus waiotapuensis sp. nov., an extremely thermophilic archaeon isolated from a freshwater hot spring. Arch Microbiol 172:95–101 [CrossRef]
    [Google Scholar]
  11. Grote R., Li L., Tamaoka J., Kato C., Horikoshi K., Antranikian G. 1999; Thermococcus siculi sp. nov., a novel hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent at the mid-Okinawa trough. Extremophiles 3:55–62 [CrossRef]
    [Google Scholar]
  12. Hoover R. B., Pikuta E. V., Bej A. K., Marsic D., Whitman W. B., Tang J., Krader P. 2003; Spirochaeta americana sp. nov., a new haloalkaliphilic, obligately anaerobic spirochaete isolated from soda Mono Lake in California. Int J Syst Evol Microbiol 53:815–821 [CrossRef]
    [Google Scholar]
  13. Huber R., Stöhr J., Hohenhaus S., Rachel R., Burggraf S., Jannasch H. W., Stetter K. O. 1995; Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyperthermophilic archaeum from a deep-sea hydrothermal vent environment. Arch Microbiol 164:255–264 [CrossRef]
    [Google Scholar]
  14. Jolivet E., l'Haridon S., Corre E., Forterre P., Prieur D. 2003; Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851 [CrossRef]
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  16. Keller M., Braun F.-J., Dirmeier R., Hafenbradl D., Burggraf S., Rachel R., Stetter K. O. 1995; Thermococcus alcaliphilus sp.nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch Microbiol 164:390–395 [CrossRef]
    [Google Scholar]
  17. Kobayashi T., Kwak Y. S., Akiba T., Kudo T., Horikoshi K. 1994; Thermococcus profundus sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Syst Appl Microbiol 17:232–236 [CrossRef]
    [Google Scholar]
  18. Kumar S., Tamura K., Nei M. 2004; mega3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  19. Kuwabara T., Minaba M., Iwayama Y., Inouye I., Nakashima M., Marumo K., Maruyama A., Sugai A., Itoh T. other authors 2005; Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount. Int J Syst Evol Microbiol 55:2507–2514 [CrossRef]
    [Google Scholar]
  20. Lovley D. R., Phillips E. J. P. 1986; Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689
    [Google Scholar]
  21. Marteinsson V. T., Birrien J.-L., Reysenbach A.-L., Vernet M., Marie D., Gambacorta A., Messner P., Sleytr U. B., Prieur D. 1999; Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 49:351–359 [CrossRef]
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  23. Miroshnichenko M. L., Bonch-Osmolovskaya E. A., Neuner A., Kostrikina N. A., Chernyh N. A., Alekseev V. A. 1989; Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium. Appl Microbiol 12:257–262 [CrossRef]
    [Google Scholar]
  24. Miroshnichenko M. L., Gongadze G. M., Rainey F. A., Kostyukova A. S., Lysenko A. M., Chernyh N. A., Bonch-Osmolovskaya E. A. 1998; Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int J Syst Bacteriol 48:23–29 [CrossRef]
    [Google Scholar]
  25. Miroshnichenko M. L., Hippe H., Stackebrandt E., Kostrikina N. A., Chernyh N. A., Jeanthon C., Nazina T. N., Belyaev S. S., Bonch-Osmolovskaya E. A. 2001; Isolation and characterization of Thermococcus sibiricus sp. nov. from a Western Siberia high-temperature oil reservoir. Extremophiles 5:85–91 [CrossRef]
    [Google Scholar]
  26. Neuner A., Jannasch H. W., Belkin S., Stetter K. O. 1990; Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch Microbiol 153:205–207 [CrossRef]
    [Google Scholar]
  27. Pikuta E. V., Lysenko A. M., Suzina N., Osipov G. A., Kuznetsov B., Tourova T., Akimenko V. K., Laurinavichus K. S. 2000; Desulfotomaculum alkaliphilum sp. nov., a new alkaliphilic, moderately thermophilic, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50:25–33 [CrossRef]
    [Google Scholar]
  28. Pikuta E. V., Hoover R. B., Bej A. K., Marsic D., Detkova E. N., Whitman W. B., Krader P. 2003; Tindallia californiensis sp. nov., a new anaerobic, haloalkaliphilic, spore-forming acetogen isolated from Mono Lake in California. Extremophiles 7:327–334 [CrossRef]
    [Google Scholar]
  29. Pikuta E. V., Itoh T., Krader P., Tang J., Whitman W. B., Hoover R. B. 2006; Anaerovirgula multivorans gen. nov., sp. nov. a novel spore-forming, alkaliphilic anaerobe isolated from Owens Lake, California. Int J Syst Evol Microbiol 56:2623–2629 [CrossRef]
    [Google Scholar]
  30. Ronimus R. S., Reysenbach A.-L., Musgrave D. R., Morgan H. W. 1997; The phylogenetic position of the Thermococcus isolate AN1 based on 16S rRNA gene sequence analysis: a proposal that AN1 represents a new species, Thermococcus zilligii sp. nov. Arch Microbiol 168:245–248 [CrossRef]
    [Google Scholar]
  31. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  32. Sambrook J., Fritch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Slobodkin A. I., Jeanthon C., L'Haridon S., Nazina T., Miroshnichenko M., Bonch-Osmolovskaya E. 1999; Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of Western Siberia. Curr Microbiol 39:99–102 [CrossRef]
    [Google Scholar]
  34. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Microbiology pp  611–654 Edited by Gerhardt R. G., Murray E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Stetter K. O., Huber R., Blochl E., Kurr M., Eden R. D., Fielder M., Cash H., Vance I. 1993; Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743–745 [CrossRef]
    [Google Scholar]
  36. Takahata Y., Nishijima M., Hoaki T., Maruyama T. 2000; Distribution and physiological characteristics of hyperthermophiles in the kubiki oil reservoir in Niigata, Japan. Appl Environ Microbiol 66:73–79 [CrossRef]
    [Google Scholar]
  37. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  38. Trüper H. G., Schlegel H. G. 1964; Sulfur metabolism in Thiorhodaceae : I. quantitative measurements on growing cells of Chromatium okenii . Antonie Van Leeuwenhoek 30:225–238 [CrossRef]
    [Google Scholar]
  39. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886
    [Google Scholar]
  40. Zillig W. 1992; The order Thermococcales. In The Prokaryotes , 2nd edn. vol 1 pp  702–706 Edited by Balows A., Trüper H., Dworkin M., Hander W., Schleifer K. H. New York: Springer-Verlag Inc;
    [Google Scholar]
  41. Zillig W., Reysenbach A.-L. 2002; Class IV. Thermococci class nov . In Bergey's Manual of Systematic Bacteriology . , 2nd edn. vol 1 pp  342–346 Edited by Boone D. R., Castenholz R. W. New York: Springer;
  42. Zillig W., Holz I., Janekovic D., Schäfer W., Reiter W. D. 1983; The Archebacterium Thermococcus celer represents, a novel genus within the thermophilic branch of the archaebacteria. Syst Appl Microbiol 4:88–94 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65057-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65057-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error