1887

Abstract

A Gram-negative, sulphate-reducing bacterium (strain H3) was isolated from an oil-reservoir model column. The new isolate was able to oxidize toluene coupled to hydrogen sulphide production. For growth, the optimum salt concentration was 1.5 % (w/v), the optimum pH was 7.2 and the optimum temperature was 34 °C. The cells were straight to slightly curved rods, 0.6–1.0 μm in diameter and 1.4–2.5 μm in length. The predominant fatty acids were C, C 7 and C cyclo, and the cells also contained dimethylacetals. Cloning and sequencing of a 1505 bp long fragment of the 16S rRNA gene showed that strain H3 is a member of the and is related closely to DSM 7044. The G+C content of the DNA was 52.0 mol% and the DNA–DNA similarity to DSM 7044 was 56.1 %. Based on differences in DNA sequence and the unique property of toluene degradation, it is proposed that strain H3 should be designated a member of a novel species within the genus , for which the name sp. nov. is proposed. The type strain is H3 (=DSM 18732=ATCC BAA-1460).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65067-0
2007-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/12/2865.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65067-0&mimeType=html&fmt=ahah

References

  1. Aeckersberg F., Bak F., Widdel F. 1991; Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156:5–14 [CrossRef]
    [Google Scholar]
  2. Aeckersberg F., Rainey F. A., Widdel F. 1998; Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170:361–369 [CrossRef]
    [Google Scholar]
  3. Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J., Wheeler D. L. 2004; GenBank: update. Nucleic Acids Res 32:D23–D26 [CrossRef]
    [Google Scholar]
  4. Campanella J. J., Bitincka L., Smalley J. 2003; MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4:29 [CrossRef]
    [Google Scholar]
  5. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36 [CrossRef]
    [Google Scholar]
  6. Cravo-Laureau C., Matheron R., Cayol J. L., Joulian C., Hirschler-Rea A. 2004; Desulfatibacillum aliphaticivorans gen. nov., sp nov., an n -alkane- and n -alkene-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 54:77–83 [CrossRef]
    [Google Scholar]
  7. Davidova I., Duncan K. E., Choi O. K., Suflita J. M. 2006; Desulfoglaeba alkanexedens gen. nov., sp. nov., an n -alkane-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 56:2737–2742 [CrossRef]
    [Google Scholar]
  8. Drzyzga O., Küver J., Blotevogel K.-H. 1993; Complete oxidation of benzoate and 4-hydroxybenzoate by a new sulfate-reducing bacterium resembling Desulfoarculus . Arch Microbiol 159:109–113 [CrossRef]
    [Google Scholar]
  9. Edwards U., Rogall T., Blocker H., Emde M., Bottger E. C. 1989; Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853 [CrossRef]
    [Google Scholar]
  10. Einen J., Ovreas L. 2006; Flaviramulus basaltis gen. nov., sp nov., a novel member of the family Flavobacteriaceae isolated from seafloor basalt. Int J Syst Evol Microbiol 56:2455–2461 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 2001 phylip (phylogeny inference package), version 3.6 Seattle, WA: Department of Genetics, University of Washington;
    [Google Scholar]
  12. Harms G., Zengler K., Rabus R., Aeckersberg F., Minz D., Rossello-Mora R., Widdel F. 1999; Anaerobic oxidation of o -xylene, m -xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl Environ Microbiol 65:999–1004
    [Google Scholar]
  13. Knoblauch C., Sahm K., Jørgensen B. B. 1999; Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen.nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int J Syst Bacteriol 49:1631–1643 [CrossRef]
    [Google Scholar]
  14. Kuever J., Könneke M., Galushko A., Drzyzga O. 2001; Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb.nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov.. Int J Syst Evol Microbiol 51:171–177
    [Google Scholar]
  15. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  16. Myhr S., Lillebo B. L. P., Sunde E., Beeder J., Torsvik T. 2002; Inhibition of microbial H2S production in an oil reservoir model column by nitrate injection. Appl Microbiol Biotechnol 58:400–408 [CrossRef]
    [Google Scholar]
  17. Rabus R., Nordhaus R., Ludwig W., Widdel F. 1993; Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol 59:1444–1451
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  19. Schink B., Thiemann V., Laue H., Friedrich M. W. 2002; Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate. Arch Microbiol 177:381–391 [CrossRef]
    [Google Scholar]
  20. Skaare B. B. 2007; Effects of initial anaerobic biodegradation on crude oil and formation water composition . PhD dissertation Department of Chemistry, University of Bergen; Norway:
  21. So C. M., Young L. Y. 1999; Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65:2969–2976
    [Google Scholar]
  22. Spring S., Merkhoffer B., Weiss N., Kroppenstedt R. M., Hippe H., Stackebrandt E. 2003; Characterization of novel psychrophilic clostridia from an Antarctic microbial mat : description of Clostridium frigoris sp.nov., Clostridium lacusfryxellense sp. nov., Clostridium bowmanii sp. nov. and Clostridium psychrophilum sp. nov. and reclassification of Clostridium laramiense as Clostridium estertheticum subsp. laramiense subsp. nov.. Int J Syst Evol Microbiol 53:1019–1029 [CrossRef]
    [Google Scholar]
  23. Stern M. J., Ames G. F. L., Smith N. H., Robinson E. C., Higgins C. F. 1984; Repetitive extragenic palindromic sequences - a major component of the bacterial genome. Cell 37:1015–1026 [CrossRef]
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  25. Versalovic J., Koeuth T., Lupski J. R. 1991; Distribution of repetitive DNA-sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831 [CrossRef]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad. hoc committee on reconciliation of approaches to bacterial systematics.. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  27. Wheeler D. L., Church D. M., Federhen S., Lash A. E., Madden T. L., Pontius J. U., Schuler G. D., Schriml L. M., Sequeira E. other authors 2003; Database resources of the National Center for Biotechnology. Nucleic Acids Res 31:28–33 [CrossRef]
    [Google Scholar]
  28. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes: a Handbook on the Biology of Bacteria, Ecophysiology, Isolation, Identification, Applications . , 2nd edn. pp 3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer Verlag;
    [Google Scholar]
  29. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov.. Arch Microbiol 129:395–400 [CrossRef]
    [Google Scholar]
  30. Widdel F., Boetius A., Rabus R. 2006; Anaerobic biodegradation of hydrocarbons including methane. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community . pp 1028–1049 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. New York: Springer;
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65067-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65067-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error