1887

Abstract

A Gram-positive, endospore-forming, alkali-tolerant, moderately halophilic bacterium, designated strain CH9d, was isolated from the sediment of Lake Chagannor in the Inner Mongolia Autonomous Region, China. The cells were rod-shaped and motile. Isolate CH9d grew at pH 5.8–10.0 (optimally at pH 8.5), at salinities of 3–20 % (w/v) marine salts (optimally at 10.0 %, w/v) and between 20 and 50 °C (optimally at 37 °C). The cell wall contained -diaminopimelic acid and the major respiratory isoprenoid quinone was MK-7. The predominant cellular fatty acids of strain CH9d were anteiso-C, anteiso-C, iso-C and iso-C and its polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and two unknown phospholipids. The G+C content of the DNA was 44.7 mol%. Strain CH9d exhibited a 16S rRNA gene sequence similarity value of only 91 % with respect to DSM 16966 and showed values below 91 % with respect to members of the genera , and . Strain CH9d could be clearly differentiated from its closest phylogenetic neighbours on the basis of several phenotypic, genotypic and chemotaxonomic features. Therefore, data from the polyphasic study support the placement of strain CH9d in a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain is CH9d (=CCM 7365=CECT 7154=CGMCC 1.6287=DSM 18087).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65136-0
2007-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/10/2381.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65136-0&mimeType=html&fmt=ahah

References

  1. Amoozegar M. A., Malekzadeh F., Malik K. A., Schumann P., Spröer C. 2003; Halobacillus karajensis sp. nov., a novel moderate halophile. Int J Syst Evol Microbiol 53:1059–1063 [CrossRef]
    [Google Scholar]
  2. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872 174AL . In Bergey's Manual of Systematic Bacteriology vol 2 pp 1105–1139 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  3. Duckworth A. W., Grant W. D., Jones B. E., van Steenbergen R. 1996; Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19:181–191 [CrossRef]
    [Google Scholar]
  4. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485
    [Google Scholar]
  5. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  6. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  7. García M. T., Ventosa A., Ruiz-Berraquero F., Kocur M. 1987; Taxonomic study and amended description of Vibrio costicola . Int J Syst Bacteriol 37:251–256 [CrossRef]
    [Google Scholar]
  8. García M. T., Gallego V., Ventosa A., Mellado E. 2005; Thalassobacillus devorans gen. nov., sp. nov. a moderately halophilic, phenol-degrading, Gram-positive bacterium. Int J Syst Evol Microbiol 55:1789–1795 [CrossRef]
    [Google Scholar]
  9. Gomori G. 1955; Preparation of buffers for use in enzyme studies. Methods Enzymol 1:138–146
    [Google Scholar]
  10. Hao M. V., Kocur M., Komagata K. 1984; Marinococcus gen. nov., a new genus for motile cocci with meso -diaminopimelic acid in the cell wall; and Marinococcus albus sp. nov. and Marinococcus halophilus (Novitsky and Kushner) comb. nov. J Gen Appl Microbiol 30:449–459 [CrossRef]
    [Google Scholar]
  11. Kushner D. J., Kamekura M. 1988; Physiology of halophilic eubacteria. In Halophilic Bacteria vol. I pp 109–140 Edited by Rodríguez-Valera F. Boca Raton, FL: CRC Press;
    [Google Scholar]
  12. Li W.-J., Schumann P., Zhang Y.-Q., Chen G.-Z., Tian X.-P., Xu L.-H., Stackebrandt E., Jiang C.-L. 2005; Marinococcus halotolerans sp. nov., isolated from Qinghai, north-west China. Int J Syst Evol Microbiol 55:1801–1804 [CrossRef]
    [Google Scholar]
  13. Lim J.-M., Jeon C. O., Kim C.-J. 2006; Bacillus taeanensis sp. nov., a halophilic Gram-positive bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol 56:2903–2908 [CrossRef]
    [Google Scholar]
  14. Liu W. Y., Zeng J., Wang L., Dou Y. T., Yang S. S. 2005 Halobacillus dabanensis sp. nov. and Halobacillus aidingensis sp. nov., isolated from salt lakes in Xinjiang, China. Int J Syst Evol Microbiol 55, 1991–1996 [CrossRef]
  15. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  16. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project (RDP). Nucleic Acids Res 24:82–85 [CrossRef]
    [Google Scholar]
  17. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  18. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  19. Márquez M. C., Ventosa A., Ruiz-Berraquero F. 1992; Phenotypic and chemotaxonomic characterization of Marinococcus halophilus . Syst Appl Microbiol 15:63–69
    [Google Scholar]
  20. Mellado E., Moore E. R. B., Nieto J. J., Ventosa A. 1995; Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui , Volcaniella eurihalina and Deleya salina , and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. Int J Syst Bacteriol 45:712–716 [CrossRef]
    [Google Scholar]
  21. Nielsen P., Fritze D., Priest F. G. 1995; Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761 [CrossRef]
    [Google Scholar]
  22. Owen R. J., Hill L. R. 1979; The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists , 2nd edn. pp 217–296 Edited by Skinner F. A., Lovelock D. W. London: Academic Press;
    [Google Scholar]
  23. Quesada E., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A. 1984; Deleya halophila , a new species of moderately halophilic bacteria. Int J Syst Bacteriol 34:287–292 [CrossRef]
    [Google Scholar]
  24. Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1980; Isolation of extremely halophilic bacteria able to grow in defined inorganic media with single carbon sources. J Gen Microbiol 119:535–538
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  26. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156
    [Google Scholar]
  27. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997; Transfer of Bacillus alginolyticus , Bacillus chondroitinus , Bacillus curdlanolyticus , Bacillus glucanolyticus , Bacillus kobensis , and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 47:289–298 [CrossRef]
    [Google Scholar]
  28. Spring S., Ludwig W., Marquez M. C., Ventosa A., Schleifer K.-H. 1996; Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp.nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46:492–496 [CrossRef]
    [Google Scholar]
  29. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968
    [Google Scholar]
  30. Wainø M., Tindall B. J., Schumann P., Ingvorsen K. 1999; Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49:821–831 [CrossRef]
    [Google Scholar]
  31. Yoon J.-H., Weiss N., Lee K.-C., Lee I.-S., Kang K. H., Park Y.-H. 2001 Jeotgalibacillus alimentarius gen. nov., sp. nov., a novel bacterium isolated from jeotgal with l-lysine in the cell wall, and reclassification of Bacillus marinus Rüger 1983 as Marinibacillus marinus gen. nov., comb. nov. Int J Syst Evol Microbiol 51, 2087–2093 [CrossRef]
  32. Yoon J.-H., Kang K. H., Park Y.-H. 2003; Halobacillus salinus sp. nov., isolated from a salt lake on the coast of the East Sea in Korea. Int J Syst Evol Microbiol 53:687–693 [CrossRef]
    [Google Scholar]
  33. Yoon J.-H., Kang K. H., Oh T.-K., Park Y.-H. 2004; Halobacillus locisalis sp. nov., a halophilic bacterium isolated from a marine solar saltern of the Yellow Sea in Korea. Extremophiles 8:23–28 [CrossRef]
    [Google Scholar]
  34. Yoon J.-H., Kang K. H., Lee C.-H., Oh H.-W., Oh T.-K. 2005; Halobacillus yeomjeoni sp. nov., isolated from a marine solar saltern in Korea. Int J Syst Evol Microbiol 55:2413–2417 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65136-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65136-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error