1887

Abstract

A novel restricted facultatively methylotrophic marine strain, MP, possessing the ribulose monophosphate pathway of C-carbon compound assimilation was isolated from a seawater sample obtained from Mokpo, South Korea. The novel isolate is aerobic, Gram-negative, asporogenous and a non-motile short rod. It grows well on methanol, methylated amines, dimethylsulfide and DMSO. Optimal growth occurs with 3 % NaCl at 30 °C and pH 7.0. Fructose is utilized as a multicarbon source. Growth factors are not required and vitamin B does not stimulate growth. The cellular fatty acid profile of the novel strain consists primarily of straight-chain saturated C and unsaturated C acids. The major ubiquinone is Q-8. The dominant phospholipids are phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content is 44.9 mol% ( ). Based on 16S rRNA gene sequence analysis and DNA–DNA relatedness (25–41 %) with the type strains of marine methylotrophs belonging to the genus , it is suggested that isolate MP represents a novel species, sp. nov. (type strain MP=KCTC 12909=VKM B-2441=JCM 14647).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65139-0
2007-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/9/2096.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65139-0&mimeType=html&fmt=ahah

References

  1. Collins M. D. 1985; Analysis of isoprenoid quinones. Methods Microbiol 18:329–366
    [Google Scholar]
  2. De Zwart J. M. M., Nelisse P. N., Kuenen J. G. 1996; Isolation and characterization of Methylophaga sulfidovorans sp. nov.: an obligately methylotrophic, aerobic, dimethylsulfide oxidizing bacterium from a microbial mat. FEMS Microbiol Ecol 20:261–270
    [Google Scholar]
  3. Doronina N. V., Braus-Stromeyer S. A., Leisinger T., Trotsenko Y. A. 1995; Isolation and characterization of a new facultatively methylotrophic bacterium: description of Methylorhabdus multivorans , gen. nov., sp. nov.. Syst Appl Microbiol 18:92–98 [CrossRef]
    [Google Scholar]
  4. Doronina N. V., Darmaeva Ts. D., Trotsenko Y. A. 2003a; Methylophaga alcalica sp. nov., a new alkaliphilic and moderately halophilic, obligately methylotrophic bacterium from the East Mongolian saline soda lake. Int J Syst Evol Microbiol 53:223–229 [CrossRef]
    [Google Scholar]
  5. Doronina N. V., Darmaeva T. D., Trotsenko Y. A. 2003b; Methylophaga natronica sp. nov., a new alkaliphilic and moderately halophilic, restricted-facultatively methylotrophic bacterium from soda lake of the Southern Transbaikal region. Syst Appl Microbiol 26:382–389 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1989; phylip – phylogeny inference package (version 3.2. Cladistics 5:164–166
    [Google Scholar]
  7. Govorukhina N. I., Trotsenko Y. A. 1989; Phospholipid composition of methylotrophic bacteria. Mikrobiologiya 58:318–323 (English translation
    [Google Scholar]
  8. Janvier M., Frehel C., Grimont F., Gasser F. 1985 Methylophaga marina gen. nov., sp. nov. and Methylophaga thalassica sp. nov., marine methylotrophs. Int J Syst Bacteriol 35131–139 [CrossRef]
  9. Johnson J. L. 1985; DNA reassociation and RNA hybridization of bacterial nucleic acids. Methods Microbiol 28:33–74
    [Google Scholar]
  10. Lane D. S. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: John Wiley & Sons;
    [Google Scholar]
  11. Li T. D., Doronina N. V., Ivanova E. G., Trotsenko Y. A. 2007; B12-independent strains of Methylophaga marina from Red Sea algae. Mikrobiologiya 76:18–23 (English translation
    [Google Scholar]
  12. Marmur J. A. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  13. Owen R. J., Lapage S. P. 1976; The thermal denaturation of partly purified bacterial deoxyribonucleic acid and its taxonomic applications. J Appl Bacteriol 41:335–340 [CrossRef]
    [Google Scholar]
  14. Reynolds E. S. 1963; The use of lead citrate at high pH as an electron opaque strain in electron microscopy. J Cell Biol 17:208–219 [CrossRef]
    [Google Scholar]
  15. Strimmer K., von Haeseler A. 1996; Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969 [CrossRef]
    [Google Scholar]
  16. Trotsenko Y. A., Doronina N. V., Govorukhina N. I. 1986; Metabolism of non-motile obligately methylotrophic bacteria. FEMS Microbiol Lett 3:293–297
    [Google Scholar]
  17. Urakami T., Komagata K. 1987; Characterization of species of marine methylotrophs of the genus Methylophaga . Int J Syst Bacteriol 37:402–406 [CrossRef]
    [Google Scholar]
  18. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  19. Vorholt J. A., Chistoserdova L., Stolyar S. M., Thauer R. K., Lidstrom M. E. 1999; Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyltetrahydromethanopterine cyclohydrolases. J Bacteriol 181:5750–5757
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65139-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65139-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error