1887

Abstract

A collection of eight clinical strains from Belgian hospitals and three clinical strains of the CCUG collection were characterized biochemically as being similar to CDC groups II-h and II-c; the latter differs from group II-h only by positivity for sucrose acidification. These 11 strains were found to cluster according to 16S rRNA gene sequence similarity at a level of ≥99.5 %, and on the basis of their tDNA-PCR profile. Based on 16S rRNA gene sequence analysis, this collection of strains was related most closely to (97.2 %), but they differed from the type strain of this species by the following phenotypic characteristics: growth at 37 °C, negativity for xylose acidification, positivity for acetate assimilation–alkalinization on Simmons’ agar base and absence of flexirubin pigments, and by their tDNA-PCR profile. Strain NF802 showed only 57.8 % DNA–DNA relatedness to the type strain of . Fatty acid composition did not enable differentiation from . The DNA G+C content of strain NF802 is 36.5 mol%. The name sp. nov. is proposed for this taxon, with type strain NF802 (=CCUG 52711=CIP 109415).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65158-0
2007-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/11/2623.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65158-0&mimeType=html&fmt=ahah

References

  1. Baele M., Baele P., Vaneechoutte M., Storms V., Butaye P., Devriese L. A., Verschraegen G., Gillis M., Haesebrouck F. 2000; Application of tDNA-PCR for the identification of Enterococcus species. J Clin Microbiol 38:4201–4207
    [Google Scholar]
  2. Bernardet J.-F., Nakagawa Y., Holmes B. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [CrossRef]
    [Google Scholar]
  3. CLSI 2005 Performance Standards for Antimicrobial Susceptibility Testing (Approved Standard M100–S15 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  4. de Beer H., Hugo C. J., Jooste P. J., Willems A., Vancanneyt M., Coenye T., Vandamme P. A. 2005; Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. Int J Syst Evol Microbiol 55:2149–2153 [CrossRef]
    [Google Scholar]
  5. Gallego V., Garcia M. T., Ventosa A. 2006; Chryseobacterium hispanicum sp. nov., isolated from the drinking water distribution system of Sevilla, Spain. Int J Syst Evol Microbiol 56:1589–1592 [CrossRef]
    [Google Scholar]
  6. Hugo C. J., Segers P., Hoste B., Vancanneyt M., Kersters K. 2003; C hryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 53:771–777 [CrossRef]
    [Google Scholar]
  7. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  8. Kämpfer P., Dreyer U., Neef A., Dott W., Busse H.-J. 2003; Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53:93–97 [CrossRef]
    [Google Scholar]
  9. Kämpfer P., Avesani V., Janssens M., Charlier J., De Baere T., Vaneechoutte M. 2006; Description of Wautersiella falsenii gen. nov., sp. nov., to accommodate clinical isolates phenotypically resembling members of the genera Chryseobacterium and Empedobacter . Int J Syst Evol Microbiol 56:2323–2329 [CrossRef]
    [Google Scholar]
  10. Kim K. K., Bae H. S., Schumann P., Lee S. T. 2005a; Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 55:133–138 [CrossRef]
    [Google Scholar]
  11. Kim K. K., Kim M. K., Lim J. H., Park H. Y., Lee S. T. 2005b; Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol 55:1287–1293 [CrossRef]
    [Google Scholar]
  12. Laffineur K., Janssens M., Charlier J., Avesani V., Wauters G., Delmée M. 2002; Biochemical and susceptibility tests useful for identification of nonfermenting Gram-negative rods. J Clin Microbiol 40:1085–1087 [CrossRef]
    [Google Scholar]
  13. Li Y., Kawamura Y., Fujiwara N., Naka T., Liu H., Huang X., Kobayashi K., Ezaki T. 2003; Chryseobacterium miricola sp. nov., a novel species isolated from condensation water of space station Mir. Syst Appl Microbiol 26:523–528 [CrossRef]
    [Google Scholar]
  14. Lind E., Ursing J. 1986; Clinical strains of Enterobacter agglomerans (synonyms: Erwinia herbicola, Erwinia milletiae ) identified by DNA-DNA-hybridization. Acta Pathol Microbiol Immunol Scand [B] 94:205–213
    [Google Scholar]
  15. Martin R., Riley P. S., Hollis D. G., Weaver R. E., Krichevsky M. I. 1981; Characterization of some groups of Gram-negative non-fermentative bacteria by the carbon source alkalinization technique. J Clin Microbiol 14:39–47
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  17. Nemec A., De Baere T., Tjernberg I., Vaneechoutte M., van der Reijden T. J. K., Dijkshoorn L. 2001; Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 51:1891–1899 [CrossRef]
    [Google Scholar]
  18. Park M. S., Jung S. R., Lee K. H., Lee M. S., Do J. O., Kim S. B., Bae K. S. 2006; Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56:433–438 [CrossRef]
    [Google Scholar]
  19. Quan Z.-X., Kim K. K., Kim M.-K., Jin L., Lee S. T. 2007; Chryseobacterium caeni sp. nov., isolated form bioreactor sludge. Int J Syst Evol Microbiol 57:141–145 [CrossRef]
    [Google Scholar]
  20. Schreckenberger P. C., Daneshvar M. I., Weyant S. R., Hollis D. G. 2003; Acinetobacter , Achromobacter , Chryseobacterium , Moraxella , and other nonfermentative Gram-negative rods. In Manual of Clinical Microbiology , 8th edn. pp 749–779 Edited by Murray P. R., Baron E. J., Jorgensen J. H., Pfaller M. A., Yolken R. H. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Shen F. T., Kämpfer P., Young C. C., Lai W. A., Arun A. B. 2005; Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int J Syst Evol Microbiol 55:1301–1304 [CrossRef]
    [Google Scholar]
  22. Shimomura K., Kaji S., Hiraishi A. 2005; Chryseobacterium shigense sp. nov., a yellow-pigmented, aerobic bacterium isolated from a lactic acid beverage. Int J Syst Evol Microbiol 55:1903–1906 [CrossRef]
    [Google Scholar]
  23. Tai C. J., Kuo H. P., Lee F. L., Chen H. K., Yokota A., Lo C. C. 2006; Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. Int J Syst Evol Microbiol 56:1771–1776 [CrossRef]
    [Google Scholar]
  24. Wauters G., Van Bosterhaut B., Janssens M., Verhaegen J. 1998; Identification of Corynebacterium amycolatum and other nonlipophilic fermentative corynebacteria of human origin. J Clin Microbiol 36:1430–1432
    [Google Scholar]
  25. Wauters G., Avesani V., Laffineur K., Charlier J., Janssens M., Van Bosterhaut B., Delmée M. 2003; Brevibacterium lutescens sp. nov., from human and environmental samples. Int J Syst Evol Microbiol 53:1321–1325 [CrossRef]
    [Google Scholar]
  26. Weon H. Y., Kim B. Y., Yoo S. H., Kwon S. W., Cho Y. H., Go S. J., Stackebrandt E. 2006; Chryseobacterium wanjuense sp. nov., isolated from greenhouse soil in Korea. Int J Syst Evol Microbiol 56:1501–1504 [CrossRef]
    [Google Scholar]
  27. Yamaguchi S., Yokoe M. 2000; A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 66:3337–3343 [CrossRef]
    [Google Scholar]
  28. Young C. C., Kämpfer P., Shen F. T., Lai W. A., Arun A. B. 2005; Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55:423–426 [CrossRef]
    [Google Scholar]
  29. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65158-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65158-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error