1887

Abstract

Strain c14, originally isolated from surface water of a freshwater pond located in Pingtung (southern Taiwan) used for culture of Pacific white shrimp (), was subjected to a polyphasic taxonomic approach. The strain exhibited strong chitinolytic activity and was able to grow under aerobic and anaerobic conditions by utilizing chitin exclusively as the carbon, nitrogen and energy source. Phylogenetic analysis of the 16S rRNA gene sequence revealed a clear affiliation of the proposed bacterium to the , most closely related to S1, WB 3.4-79 and KM-45, with 94.6, 93.6 and 92.9 % 16S rRNA gene sequence similarity, respectively. The predominant fatty acids detected in cells of strain c14 were C, C 7 and summed feature 3 (C 7 and/or C iso 2-OH). The G+C content of the genomic DNA was 69.5 (±1.0) mol%. Biochemical, physiological, chemotaxonomic and phylogenetic analyses showed that strain c14 could not be assigned to any known genus of the . Therefore, strain c14 is classified within a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain of is c14 (=LMG 23346 =BCRC 17533).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65168-0
2007-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/12/2854.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65168-0&mimeType=html&fmt=ahah

References

  1. Chang S. C., Wang J. T., Vandamme P., Hwang J. H., Chang P. S., Chen W. M. 2004; Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. Syst Appl Microbiol 27:43–49 [CrossRef]
    [Google Scholar]
  2. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P. 2001; Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735 [CrossRef]
    [Google Scholar]
  3. Chern L. L., Stackebrandt E., Lee S. F., Lee F. L., Chen J. K., Fu H. M. 2004; Chitinibacter tainanensis gen. nov., sp. nov., a chitin-degrading aerobe from soil in Taiwan. Int J Syst Evol Microbiol 54:1387–1391 [CrossRef]
    [Google Scholar]
  4. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequence. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef]
    [Google Scholar]
  5. Collins M. D. 1985; Analysis of isoprenoid quinones. Methods Microbiol 18:329–366
    [Google Scholar]
  6. Collins M. D. 1994; Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics pp 265–309 Edited by Goodfellow M., O'Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  9. Genetics Computer Group; 1995 Wisconsin Package Version 8.1 Program Manual Madison, WI: Genetics Computer Group;
    [Google Scholar]
  10. Gooday G. W. 1990; The ecology of chitin degradation. Adv Microb Ecol 11:387–430
    [Google Scholar]
  11. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  12. Hippe H., Hagelstein A., Kramer I., Swiderski J., Stackebrandt E. 1999; Phylogenetic analysis of Formivibrio citricus , Propionivibrio dicarboxylicus , Anaerobiospirillum thomasii , Succinimonas amylolytica and Succinivibrio dextrinosolvens and proposal of Succinivibrionaceae fam. nov. Int J Syst Bacteriol 49:779–782 [CrossRef]
    [Google Scholar]
  13. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  14. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  15. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  16. Logan N. A. 1989; Numerical taxonomy of violet-pigmented, gram-negative bacteria and description of Iodobacter fluviatile gen. nov., comb. nov. Int J Syst Bacteriol 39:450–456 [CrossRef]
    [Google Scholar]
  17. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenegger M., Neumaier J., Bachleitner M., Schleifer K. H. 1998; Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568 [CrossRef]
    [Google Scholar]
  18. MacFaddin J. F. 2000 Biochemical Tests for the Identification of Medical Bacteria , 3rd edn. Baltimore, MD: Williams & Wilkins;
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  20. MIDI Inc. 1999 Sherlock Microbial Identification System, Operating Manual , version 3.0 Newark, DE: MIDI, Inc;
    [Google Scholar]
  21. Powers E. M. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61:3756–3758
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  23. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  24. Shigemasa Y., Minami S. 1996; Applications of chitin and chitosan for biomaterials. Biotechnol Genet Eng Rev 13:383–420 [CrossRef]
    [Google Scholar]
  25. Stackebrandt E., Lang E., Cousin S., Päuker O., Brambilla E., Kroppenstedt R., Lünsdorf H. 2007; Deefgea rivuli gen. nov., sp. nov., a member of the class Betaproteobacteria . Int J Syst Evol Microbiol 57:639–645 [CrossRef]
    [Google Scholar]
  26. Tanaka K., Nakamura K., Mikami E. 1991; Fermentation of S-citramalate, citrate, mesaconate, and pyruvate by a gram-negative strictly anaerobic non-spore-former, Formivibrio citricus gen. nov., sp. nov. Arch Microbiol 155:491–495 [CrossRef]
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  28. Yang H.-C., Im W.-T., An D.-S., Park W.-S., Kim I. S., Lee S.-T. 2005; Silvimonas terrae gen. nov., sp. nov., a novel chitin-degrading facultative anaerobe belonging to the ‘ Betaproteobacteria ’. Int J Syst Evol Microbiol 55:2329–2332 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65168-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65168-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error