1887

Abstract

strain 45H, isolated in 1960 during a mutagenesis programme on the industrial streptomycin producer 52-1, encodes an extracellular, pleiotropic autoregulatory signalling protein, factor C, which stimulates sporulation of 52-1 in submerged culture. The gene, which codes for factor C, is present in very few streptomycetes and is not present in 52-1. Based on 16S rRNA gene sequencing and other molecular data, 45H, the factor C producer, is here shown to be related to the original laboratory strain of , which was being studied in the same laboratory in 1960, and to . Southern blotting revealed that three out of four independently isolated strains of possess . Both the original strain of and 45H are therefore identified as members of the species , and we propose that 45H should be renamed 45H.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65311-0
2008-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/4/1029.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65311-0&mimeType=html&fmt=ahah

References

  1. Birkó, Z., Sümegi, A., Vinnai, A., van Wezel, G., Szeszák, F., Vitális, S., Szabó, P. T., Kele, Z., Janáky, T. & Biró, S.(1999). Characterization of the gene for factor C, an extracellular signal protein involved in morphological differentiation of Streptomyces griseus. Microbiology 145, 2245–2253. [Google Scholar]
  2. Birkó, Z., Bialek, S., Buzás, K., Szájli, E., Traag, B. A., Medzihradszky, K. F., Rigali, S., Vijgenboom, E., Penyige, A. & other authors(2007). The secreted signaling protein factor C triggers the A-factor response regulon in Streptomyces griseus: overlapping signalling routes. Mol Cell Proteomics 6, 1248–1256.[CrossRef] [Google Scholar]
  3. Biró, S., Békési, I., Vitális, S. & Szabó, G.(1980). A substance effecting differentiation in Streptomyces griseus. Purification and properties. Eur J Biochem 103, 359–363.[CrossRef] [Google Scholar]
  4. Chater, K. F.(1998). Taking a genetic scalpel to the Streptomyces colony. Microbiology 144, 1465–1478.[CrossRef] [Google Scholar]
  5. Fehér, Zs. & Szabó, G.(1978). Genetic relatedness between streptomycin-producing and non-producing strains of Streptomyces griseus, studied by means of DNA-DNA hybridization. Acta Biol Acad Sci Hung 29, 165–172. [Google Scholar]
  6. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  7. Ferguson, E. V., Ward, A. C., Sanglier, J. J. & Goodfellow, M.(1997). Evaluation of Streptomyces species-groups by pyrolysis mass spectrometry. Zentralbl Bakteriol 285, 169–181.[CrossRef] [Google Scholar]
  8. Gause, G. F., Preobrazhenskaya, T. P., Sveshnikova, M. A., Terekhova, L. P. & Maximova, T. S.(1986).Streptomyces flavofungini nom. rev., comb. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 22. Int J Syst Bacteriol 36, 573–576.[CrossRef] [Google Scholar]
  9. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  10. Kim, B., Al-Tai, A. M., Kim, S. B., Somasundaram, P. & Goodfellow, M.(2000).Streptomyces thermocoprophilus sp. nov., a cellulase-free endo-xylanase-producing streptomycete. Int J Syst Evol Microbiol 50, 505–509.[CrossRef] [Google Scholar]
  11. Mehling, A., Wehmeier, U. F. & Piepersberg, W.(1995). Nucleotide sequences of streptomycete 16S ribosomal DNA: towards a specific identification system for streptomycetes using PCR. Microbiology 141, 2139–2147.[CrossRef] [Google Scholar]
  12. Ohnishi, Y., Yamazaki, H., Kato, J. Y., Tomono, A. & Horinouchi, S.(2005). AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci Biotechnol Biochem 69, 431–439.[CrossRef] [Google Scholar]
  13. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  14. Stackebrandt, E., Rainey, F. A. & Ward-Rainey, N. L.(1997). Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47, 479–491.[CrossRef] [Google Scholar]
  15. Szabó, G., Vályi-Nagy, T., Barabás, Gy. & Bássler, G.(1960). Comparison of strains of Streptomyces griseus which produce streptomycin and those which do not. Nature 188, 428–442. [Google Scholar]
  16. Szabó, G., Barabás, Gy & Vályi-Nagy, T.(1961). Comparison of Streptomyces griseus strains which produce streptomycin and those which do not. Arch Microbiol 40, 261–274. [Google Scholar]
  17. Úri, J. & Békési, I.(1958). Flavofungin, a new crystalline antifungal antibiotic: origin and biological properties. Nature 181, 908 [Google Scholar]
  18. Williams, S. T., Goodfellow, M., Alderson, G., Wellington, G. M., Sneath, P. H. A. & Sackin, M. J.(1983). Numerical classification of Streptomyces and related genera. J Gen Microbiol 129, 1743–1813. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65311-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65311-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error