1887

Abstract

The taxonomic positions of four aerobic, obligately halo(alkali)philic/-tolerant, methanotrophic bacteria previously affiliated with the genera (‘ ’ strains 20Z and 5Z) and ( strains AMO1 and NI) were investigated. Phylogenetic analysis of 16S rRNA gene sequences indicated that the strains form a separate branch within the type I methanotrophic bacteria and are closely related to . DNA–DNA hybridization data revealed relatively low levels of relatedness of sp. AMO1 and sp. N1 with each other and with previously described species of the genera and (<55 %), indicating that they may represent novel species. Based on the results presented here and on previously reported morphological and physiological characteristics, we classify these halotolerant and halophilic methanotrophic strains as representing novel species within the genus : sp. nov. (type strain 20Z =VKM B-2133 =NCIMB 14124; reference strain 5Z =VKM B-2180), sp. nov. (type strain NI =VKM B-2462 =FERM BP-5633 =NBRC 103677) and sp. nov. (type strain AMO1 =NCCB 97157 =NCIMB 13566 =VKM B-2464). The genus has been emended in its description.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65317-0
2008-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/3/591.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65317-0&mimeType=html&fmt=ahah

References

  1. Bowman, J. P., Sly, L. I., Nichols, P. D. & Hayward, A. C.(1993). Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43, 735–753.[CrossRef] [Google Scholar]
  2. Bowman, J. P., Sly, L. I. & Stackebrandt, E.(1995). The phylogenetic position of the family Methylococcaceae. Int J Syst Bacteriol 45, 182–185.[CrossRef] [Google Scholar]
  3. Bowman, J. P., McCammon, S. A. & Skerratt, J. H.(1997).Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143, 1451–1459.[CrossRef] [Google Scholar]
  4. Cho, J.-C. & Giovannoni, S. J.(2003).Fulvimarina pelagi gen. nov., sp. nov., a marine bacterium that forms a deep evolutionary lineage of descent in the order ‘Rhizobiales’. Int J Syst Evol Microbiol 53, 1853–1859.[CrossRef] [Google Scholar]
  5. Dedysh, S. N., Belova, S. E., Bodelier, P. L. E., Smirnova, K. V., Khmelenina, V. N., Chidthaisong, A., Trotsenko, Y. A., Liesack, W. & Dunfield, P. F.(2007).Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs. Int J Syst Evol Microbiol 57, 472–479.[CrossRef] [Google Scholar]
  6. Edwards, U., Rogall, T., Blöcker, H., Emde, M. & Böttger, E. C.(1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17, 7843–7853.[CrossRef] [Google Scholar]
  7. Felsenstein, J.(2004).phylip: phylogeny inference package, version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  8. Fuse, H., Ohta, M., Takimura, O., Murakami, K., Inoue, H., Yamaoka, Y., Oclarit, J. M. & Omori, T.(1998). Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Biosci Biotechnol Biochem 62, 1925–1931.[CrossRef] [Google Scholar]
  9. Hanson, R. S. & Hanson, T. E.(1996). Methanotrophic bacteria. Microbiol Rev 60, 439–471. [Google Scholar]
  10. Heyer, J., Berger, U., Hardt, M. & Dunfield, P. F.(2005).Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J Syst Evol Microbiol 55, 1817–1826.[CrossRef] [Google Scholar]
  11. Higgins, I. J., Best, D. J. & Hammond, R. C.(1980). New findings in methane-utilizing bacteria highlight their importance in the bio-sphere and their commercial potential. Nature 286, 561–564.[CrossRef] [Google Scholar]
  12. Higgins, D. G., Thompson, J. D. & Gibson, T. J.(1996). Using clustal for multiple sequence alignments. Methods Enzymol 266, 383–402. [Google Scholar]
  13. Johnson, J. L.(1994). Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology, pp. 655–682. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  14. Kaluzhnaya, M. G., Khmelenina, V. N., Eshinimaev, B. Ts., Suzina, N. E., Nikitin, D., Solonin, A., Lin, J.-L., McDonald, I. R., Murrell, J. C. & Trotsenko, Y. A.(2001). Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the Southeastern Transbaikal region and description of Methylomicrobium buryatense sp. nov. Syst Appl Microbiol 24, 166–176.[CrossRef] [Google Scholar]
  15. Kalyuzhnaya, M. G., Khmelenina, V. N., Starostina, N. G., Baranova, S. B., Suzina, N. E. & Trotsenko, Y. A.(1998). A new moderately halophilic methanotroph of the genus Methylobacter. Microbiology English translation of Mikrobiologiia 67, 438–444. [Google Scholar]
  16. Kalyuzhnaya, M. G., Khmelenina, V. N., Suzina, N. E., Lysenko, A. M. & Trotsenko, Y. A.(1999). New methanotrophic isolates from soda lakes of the southern Transbaikal region. Microbiology English translation of Mikrobiologiia 68, 592–600. [Google Scholar]
  17. Katayama-Fujimura, Y., Komatsu, Y., Kuraishi, H. & Kaneko, T.(1984). Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 48, 3169–3172.[CrossRef] [Google Scholar]
  18. Khmelenina, V. N., Kalyuzhnaya, M. G., Starostina, N. G., Suzina, N. E. & Trotsenko, Y. A.(1997). Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva soda lakes. Curr Microbiol 35, 257–261.[CrossRef] [Google Scholar]
  19. Khmelenina, V. N., Kalyuzhnaya, M. G., Sakharovsky, V. G., Suzina, N. E., Trotsenko, Y. A. & Gottschalk, G.(1999). Osmoadaptation in halophilic and alkaliphilic methanotrophs. Arch Microbiol 172, 321–329.[CrossRef] [Google Scholar]
  20. Lin, J.-L., Radajewski, S., Eshinimaev, B. T., Trotsenko, Y. A., McDonald, I. R. & Murrell, J. C.(2004). Molecular diversity of methanotrophs in Transbaikal soda lake sediments and identification of potentially active populations by stable isotope probing. Environ Microbiol 6, 1049–1060.[CrossRef] [Google Scholar]
  21. Miller, J. A., Kalyuzhnaya, M. G., Noyes, E., Lara, J. C., Lidstrom, M. E. & Chistoserdova, L.(2005).Labrys methylaminiphilus sp. nov., a novel facultatively methylotrophic bacterium from a freshwater lake sediment. Int J Syst Evol Microbiol 55, 1247–1253.[CrossRef] [Google Scholar]
  22. Nercessian, O., Kalyuzhnaya, M. G., Joye, S., Lidstrom, M. E. & Chistoserdova, L.(2005). Analysis of fae and fhcD genes in Mono Lake, California. Appl Environ Microbiol 71, 8949–8953.[CrossRef] [Google Scholar]
  23. Reshetnikov, A. S., Khmelenina, V. N. & Trotsenko, Y. A.(2006). Characterization of the ectoine biosynthesis genes of haloalkalotolerant obligate methanotroph “Methylomicrobium alcaliphilum 20Z”. Arch Microbiol 184, 286–297.[CrossRef] [Google Scholar]
  24. Sieburth, J. M., Johnson, P. W., Eberhardt, M. A., Sieracki, M. E., Lidstrom, M. & Laux, D.(1987). The first methane-oxidizing bacterium from the upper mixed layer of the deep ocean. Methylomonas pelagica sp. nov. Curr Microbiol 14, 285–293.[CrossRef] [Google Scholar]
  25. Sorokin, D. Y., Jones, B. E. & Kuenen, J. G.(2000). A novel obligately methylotrophic, methane-oxidizing Methylomicrobium species from a highly alkaline environment. Extremophiles 4, 145–155.[CrossRef] [Google Scholar]
  26. Trotsenko, Y. A. & Khmelenina, V. N.(2002a). Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177, 123–131.[CrossRef] [Google Scholar]
  27. Trotsenko, Y. A. & Khmelenina, V. N.(2002b). Biology and osmoadaptation of haloalkaliphilic methanotrophs. Microbiology English translation of Mikrobiologiia 71, 123–132.[CrossRef] [Google Scholar]
  28. Trotsenko, Yu. A., Doronina, N. V. & Khmelenina, V. N.(2005). Biotechnological potential of methylotrophic bacteria: a review of current status and future prospects. Appl Biochem Microbiol (English translation of Prikl Biokhim Mikrobiol) 41, 437–441. [Google Scholar]
  29. Wartiainen, I., Hestnes, A. G., McDonald, I. R. & Svenning, M. M.(2006).Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (7 ° N). Int J Syst Evol Microbiol 56, 109–113.[CrossRef] [Google Scholar]
  30. Whalen, S. C. & Reeburgh, W. S.(1990). Consumption of atmospheric methane by tundra soils. Nature 346, 160–162.[CrossRef] [Google Scholar]
  31. Whittenbury, R., Phillips, K. C. & Wilkinson, J. F.(1970). Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61, 205–218.[CrossRef] [Google Scholar]
  32. Wise, M. G., McArthur, J. V. & Shimkets, L. J.(2001).Methylosarcina fibrata gen. nov., sp. nov. and Methylosarcina quisquiliarum sp. nov., novel type I methanotrophs. Int J Syst Evol Microbiol 51, 611–621. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65317-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65317-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error