1887

Abstract

Several strains of heterotrophic, anaerobic thermophilic bacteria were isolated from hot springs of the Uzon Caldera, Kamchatka, Far East Russia. Strain JW/IW010 was isolated from a hot spring within the West sector of the Eastern Thermal field, near Pulsating Spring in the Winding Creek area. Cells of strain JW/IW010 were straight to slightly curved rods, 0.5 μm in width and variable in length from 2 to 5 μm and occasionally up to 15 μm, and formed oval subterminal spores. Cells stained Gram-negative, but were Gram-type positive. Growth was observed between 32.5 and 69 °C with an optimum around 61 °C (no growth occurred at or below 30 °C, or at or above 72 °C). The pH range for growth was 4.2–8.9 with an optimum at 7.1 (no growth occurred at or below pH 3.9, or at 9.2 or above). The shortest observed doubling-time at pH 6.9 and 61 °C was 30 min. Strain JW/IW010 was chemo-organotrophic; yeast extract, peptone, Casamino acids and tryptone supported growth. Yeast extract was necessary for the utilization of non-proteinaceous substrates, and growth was observed with inulin, cellobiose, maltose, sucrose, glucose, fructose, galactose, mannose, xylose, trehalose, mannitol, pyruvate and crotonate. The G+C content of the genomic DNA of strain JW/IW010 was 33.6 mol% (HPLC method). The major phospholipid fatty acids were iso-15 : 0 (53.5 %), 15 : 0 (11.8 %), 16 : 0 (7.3 %), 10-methyl 16 : 0 (7.3 %) and anteiso-15 : 0 (5.3 %). 16S rRNA gene sequence analysis placed strain JW/IW010 in the genus of the family ‘’ (), with JW/SL-NZ826 (97 % 16S rRNA gene sequence similarity) and DSM 2030 (94.5 %) as the closest phylogenetic relatives with validly published names. The level of DNA–DNA relatedness between strain JW/IW010 and JW/SL-NZ826 was 64 %. Based on the physiological, phylogenetic and genotypic data, strain JW/IW010 represents a novel taxon, for which the name sp. nov. is proposed. The type strain is JW/IW010 (=ATCC BAA-1464=DSM 18761). The effectively published strain, 1501/60, of ‘’ [ Krivenko, V. V., Vadachloriya, R. M., Chermykh, N. A., Mityushina, L. L. & Krasilnikova, E. N. (1990). (English translation of ) , 741–748 ] had approximately 88.0 % DNA–DNA relatedness with strain JW/IW010 and was included in the novel taxon.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65343-0
2008-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/11/2565.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65343-0&mimeType=html&fmt=ahah

References

  1. Felsenstein, J.(2001).phylip (Phylogenetic inference package) version 3.6a2.1. Department of Genome Sciences, University of Washington, Seattle, USA.
  2. Gonzalez, J. M. & Saiz-Jimenez, C.(2005). A simple fluorimetric method for the estimation of DNA-DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 9, 75–79.[CrossRef] [Google Scholar]
  3. Guckert, J. B., Antworth, C. P., Nichols, P. D. & White, D. C.(1985). Phospholipid, ester-linked fatty-acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Lett 31, 147–158.[CrossRef] [Google Scholar]
  4. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York, NY: Academic Press.
  5. Kozianowski, G., Canganella, F., Rainey, F. A., Hippe, H. & Antranikian, G.(1997). Purification and characterization of thermostable pectate-lyases from a newly isolated thermophilic bacterium, Thermoanaerobacter italicus sp. nov. Extremophiles 1, 171–182.[CrossRef] [Google Scholar]
  6. Krivenko, V. V., Vadachloriya, R. M., Chermykh, N. A., Mityushina, L. L. & Krasilnikova, E. N.(1990).Clostridium uzonii sp. nov., an anaerobic thermophilic glycolytic bacterium isolated from hot springs in the Kamchatka peninsula. Microbiology English translation of Mikrobiologiia 59, 741–748. [Google Scholar]
  7. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrant & M. Goodfellow. Chichester, UK: John Wiley & Sons.
  8. Lee, Y.-E., Jain, M. K., Lee, C., Lowe, S. E. & Zeikus, J. G.(1993). Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int J Syst Bacteriol 43, 41–51.[CrossRef] [Google Scholar]
  9. Lee, Y.-J., Wagner, I. D., Brice, M. E., Kevbrin, V. V., Mills, G. L., Romanek, C. S. & Wiegel, J.(2005).Thermosediminibacteroceani gen. nov., sp. nov. and Thermosediminibacter litoriperuensis sp. nov., new anaerobic thermophilic bacteria isolated from Peru Margin. Extremophiles 9, 375–383.[CrossRef] [Google Scholar]
  10. Lee, Y.-J., Dashti, M., Prange, A., Rainey, F. A., Rohde, M., Whitman, W. B. & Wiegel, J.(2007a).Thermoanaerobacter sulfurigignens sp. nov., an anaerobic thermophilic bacterium that reduces 1 M thiosulfate to elemental sulfur and tolerates 90 mM sulfite. Int J Syst Evol Microbiol 57, 1429–1434.[CrossRef] [Google Scholar]
  11. Lee, Y.-J., Prange, A., Lichtenberg, H., Rohde, M., Dashti, M. & Wiegel, J.(2007b). In situ analysis of sulfur species in sulfur globules produced from thiosulfate by Thermoanaerobacter sulfurigignens and Thermoanaerobacterium thermosulfurigenes. J Bacteriol 189, 7525–7529.[CrossRef] [Google Scholar]
  12. Ljungdahl, L. G. & Wiegel, J.(1986). Working with anaerobic bacteria. In Manual of Industrial Microbiology and Biotechnology, pp. 115–127. Edited by A. L. Demain & N. A. Solomon. Washington, DC: American Society for Microbiology.
  13. Marmur, J. & Doty, P.(1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef] [Google Scholar]
  14. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  15. Nicholas, K. B. & Nicholas, H. B.(1997). GeneDoc: a tool for editing and annotating multiple sequence alignments v2.6.001. Distributed by the author.
  16. Onyenwoke, R. U. & Wiegel, J.(2008). Genus VIII. Thermoanaerobacter. In Bergey's Manual of Systematic Bacteriology (in press).
  17. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  18. Schink, B. & Zeikus, J. G.(1983).Clostridium thermosulfurogenes sp. nov., a new thermophile that produces elemental sulphur from thiosulphate. J Gen Microbiol 129, 1149–1158. [Google Scholar]
  19. Stackebrandt, E., Kramer, I., Swiderski, J. & Hippe, H.(1999). Phylogenetic basis for a taxonomic dissection of the genus Clostridium. FEMS Immunol Med Microbiol 24, 253–258.[CrossRef] [Google Scholar]
  20. Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P. A., Kämpfer, P., Maiden, M. C., Nesme, X., Rosselló-Mora, R., Swings, J. & other authors(2002). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52, 1043–1047.[CrossRef] [Google Scholar]
  21. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  22. White, D. C., Davis, W. M., Nickels, J. S., King, J. D. & Bobbie, R. J.(1979). Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40, 51–62.[CrossRef] [Google Scholar]
  23. Widdel, F. & Bak, F.(1992). Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, pp. 3352–3378. Edited by A. Balows, H. Trüper, M. Dworkin, W. Harder & H. Schleifer. New York: Springer.
  24. Wiegel, J.(1981). Distinction between the Gram reaction and the Gram type of bacteria. Int J Syst Bacteriol 31, 88[CrossRef] [Google Scholar]
  25. Wiegel, J. & Ljungdahl, L. G.(1981).Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Arch Microbiol 128, 343–348.[CrossRef] [Google Scholar]
  26. Wilson, K.(1997). Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York, NY: Greene Publishing and Wiley-Interscience.
  27. Zhang, C. L., Fouke, B. W., Bonheyo, G. T., Peacock, A. D., White, D. C., Huang, Y. & Romanek, C. S.(2004). Lipid biomarkers and carbon-isotopes of modern travertine deposits (Yellowstone National Park, USA): implications for biogeochemical dynamics in hot-spring systems. Geochim Cosmochim Acta 68, 3157–3169.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65343-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65343-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error