1887

Abstract

A novel thermophilic, strictly anaerobic archaeon, designated strain Arc51, was isolated from a rock sample collected from a deep-sea hydrothermal field in Suiyo Seamount, Izu-Bonin Arc, western Pacific Ocean. Cells of the isolate were irregular cocci with single flagella and exhibited blue–green fluorescence at 436 nm. The optimum temperature, pH and NaCl concentration for growth were 70 °C, pH 6.5 and 3 % (w/v), respectively. Strain Arc51 could grow on thiosulfate or sulfite as an electron acceptor in the presence of hydrogen. This strain required acetate as a carbon source for its growth, suggesting that the reductive acetyl CoA pathway for CO fixation was incomplete. In addition, coenzyme M (2-mercaptoethanesulfonic acid), which is a known methyl carrier in methanogenesis, was also a requirement for growth of the strain. Analysis of the 16S rRNA gene sequence revealed that the isolate was similar to members of the genus , with sequence similarities of 93.6–97.2 %; the closest relative was . Phylogenetic analyses of the and genes, encoding the alpha and beta subunits of dissimilatory sulfite reductase and the alpha subunit of adenosine-5′-phosphosulfate reductase, respectively, produced results similar to those inferred from comparisons based on the 16S rRNA gene sequence. On the basis of phenotypic and phylogenetic data, strain Arc51 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Arc51 (=NBRC 100649=DSM 18877).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65422-0
2008-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/4/810.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65422-0&mimeType=html&fmt=ahah

References

  1. Achenbach, L. & Woese, C.(1995). 16S and 23S rRNA-like primers. In Archaea: a Laboratory Manual, pp. 201–203. Edited by F. T. Robb, A. R. Place, K. R. Sowers, H. J. Schreier, S. DasSarma & E. M. Fleischmann. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  2. Allen, J. R., Clark, D. D., Krum, J. G. & Ensign, S. A.(1999). A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation. Proc Natl Acad Sci U S A 96, 8432–8437.[CrossRef] [Google Scholar]
  3. Boyd, J. M., Ellsworth, A. & Ensign, S. A.(2006). Characterization of 2-bromoethanesulfonate as a selective inhibitor of the coenzyme M-dependent pathway and enzymes of bacterial aliphatic epoxide metabolism. J Bacteriol 188, 8062–8069.[CrossRef] [Google Scholar]
  4. Burggraf, S., Jannasch, H. W., Nicolaus, B. & Stetter, K. O.(1990).Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing Archaebacteria. Syst Appl Microbiol 13, 24–28.[CrossRef] [Google Scholar]
  5. Coleman, N. V. & Spain, J. C.(2003a). Epoxyalkane: coenzyme M transferase in the ethene and vinyl chloride biodegradation pathways of Mycobacterium strain JS60. J Bacteriol 185, 5536–5545.[CrossRef] [Google Scholar]
  6. Coleman, N. V. & Spain, J. C.(2003b). Distribution of the coenzyme M pathway of epoxide metabolism among ethene- and vinyl chloride-degrading Mycobacterium strains. Appl Environ Microbiol 69, 6041–6046.[CrossRef] [Google Scholar]
  7. Danko, A. S., Saski, C. A., Tomkins, J. P. & Freedman, D. L.(2006). Involvement of coenzyme M during aerobic biodegradation of vinyl chloride and ethene by Pseudomonas putida strain AJ and Ochrobactrum sp. strain TD. Appl Environ Microbiol 72, 3756–3758.[CrossRef] [Google Scholar]
  8. Friedrich, M. W.(2002). Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulfate reductase genes among sulfate-reducing microorganisms. J Bacteriol 184, 278–289.[CrossRef] [Google Scholar]
  9. Glasby, G. P., Iizasa, K., Yuasa, M. & Usui, A.(2000). Submarine hydrothermal mineralization on the Izu-Bonin Arc, south of Japan: an overview. Mar Georesour Geotechnol 18, 141–176. [Google Scholar]
  10. Graham, D. E. & White, R. H.(2002). Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics. Nat Prod Rep 19, 133–147.[CrossRef] [Google Scholar]
  11. Hafenbradl, D., Keller, M., Dirmeier, R., Rachel, R., Rossnagel, P., Burggraf, S., Huber, H. & Stetter, K. O.(1996).Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch Microbiol 166, 308–314.[CrossRef] [Google Scholar]
  12. Hara, K., Kakegawa, T., Yamashiro, K., Maruyama, A., Ishibashi, J., Marumo, K., Urabe, T. & Yamagishi, A.(2005). Analysis of the archaeal sub-seafloor community at Suiyo Seamount on the Izu-Bonin Arc. Adv Space Res 35, 1634–1642.[CrossRef] [Google Scholar]
  13. Hattori, S., Kamagata, Y., Hanada, S. & Shoun, H.(2000).Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50, 1601–1609.[CrossRef] [Google Scholar]
  14. Higashi, Y., Sunamura, M., Kitamura, K., Nakamura, K.-I., Kurusu, Y., Ishibashi, J.-I., Urabe, T. & Maruyama, A.(2004). Microbial diversity in hydrothermal surface to subsurface environments of Suiyo Seamount, Izu-Bonin Arc, using a catheter-type in situ growth chamber. FEMS Microbiol Ecol 47, 327–336.[CrossRef] [Google Scholar]
  15. Huber, H., Jannasch, H., Rachel, R., Fuchs, T. & Stetter, K. O.(1997).Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Syst Appl Microbiol 20, 374–380.[CrossRef] [Google Scholar]
  16. Itoh, T., Suzuki, K., Sanchez, P. C. & Nakase, T.(1999).Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Bacteriol 49, 1157–1163.[CrossRef] [Google Scholar]
  17. Kashefi, K., Tor, J. M., Holmes, D. E., Gaw Van Praagh, C. V., Reysenbach, A. L. & Lovley, D. R.(2002).Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int J Syst Evol Microbiol 52, 719–728.[CrossRef] [Google Scholar]
  18. Klenk, H. P., Clayton, R. A., Tomb, J. F., White, O., Nelson, K. E., Ketchum, K. A., Dodson, R. J., Gwinn, M., Hickey, E. K. & other authors(1997). The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364–370.[CrossRef] [Google Scholar]
  19. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  20. Mattes, T. E., Coleman, N. V., Spain, J. C. & Gossett, J. M.(2005). Physiological and molecular genetic analyses of vinyl chloride and ethene biodegradation in Nocardioides sp. strain JS614. Arch Microbiol 183, 95–106.[CrossRef] [Google Scholar]
  21. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  22. Miller, T. L., Wolin, M. J., Zhao, H. X. & Bryant, M. P.(1986). Characteristics of methanogens isolated from bovine rumen. Appl Environ Microbiol 51, 201–202. [Google Scholar]
  23. Mori, K., Yamamoto, H., Kamagata, Y., Hatsu, M. & Takamizawa, K.(2000).Methanocalculus pumilus sp. nov., a heavy-metal-tolerant methanogen isolated from a waste-disposal site. Int J Syst Evol Microbiol 50, 1723–1729. [Google Scholar]
  24. NBRC(2005).NBRC Catalogue of Biological Resources: Microorganisms, Genomic DNA Clones, and cDNAs. Chiba, Japan: National Institute of Technology and Evaluation (NITE).
  25. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  26. Sprenger, W. W., van Belzen, M. C., Rosenberg, J., Hackstein, J. H. & Keltjens, J. T.(2000).Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int J Syst Evol Microbiol 50, 1989–1999.[CrossRef] [Google Scholar]
  27. Stetter, K. O.(1988).Archaeoglobus fulgidus gen. nov., sp. nov. a new taxon of extremely thermophilic Archaebacteria. Syst Appl Microbiol 10, 172–173.[CrossRef] [Google Scholar]
  28. Stetter, K. O., Lauerer, G., Thomm, M. & Neuner, A.(1987). Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236, 822–824.[CrossRef] [Google Scholar]
  29. Stetter, K. O., Huber, R., Blöchl, E., Kurr, M., Eden, R. D., Feilder, M., Cash, H. & Vance, I.(1993). Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365, 743–745.[CrossRef] [Google Scholar]
  30. Tamaki, H., Hanada, S., Kamagata, Y., Nakamura, K., Nomura, N., Nakano, K. & Matsumura, M.(2003).Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. Int J Syst Evol Microbiol 53, 519–526.[CrossRef] [Google Scholar]
  31. Taylor, C. D. & Wolfe, R. S.(1974). Structure and methylation of coenzyme M (HSCH2CH2SO3). J Biol Chem 249, 4879–4885. [Google Scholar]
  32. Taylor, C. D., McBride, B. C., Wolfe, R. S. & Bryant, M. P.(1974). Coenzyme M, essential for growth of a rumen strain of Methanobacterium ruminantium. J Bacteriol 120, 974–975. [Google Scholar]
  33. Thauer, R. K.(1998). Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiology 144, 2377–2406.[CrossRef] [Google Scholar]
  34. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  35. Tor, J. M., Kashefi, K. & Lovley, D. R.(2001). Acetate oxidation coupled to Fe(III) reduction in hyperthermophilic microorganisms. Appl Environ Microbiol 67, 1363–1365.[CrossRef] [Google Scholar]
  36. Tsunogai, U., Ishibashi, J., Wakita, H., Gamo, T., Watanabe, K., Kajimura, T., Kanayama, S. & Sakai, H.(1994). Peculiar features of Suiyo Seamount hydrothermal fluids, Izu-Bonin Arc: differences from subaerial volcanism. Earth Planet Sci Lett 126, 289–301.[CrossRef] [Google Scholar]
  37. Vargas, M., Kashefi, K., Blunt-Harris, E. L. & Lovley, D. R.(1998). Microbiological evidence for Fe(III) reduction on early Earth. Nature 395, 65–67.[CrossRef] [Google Scholar]
  38. Vorholt, J., Kunow, J., Stetter, K. O. & Thauer, R. K.(1995). Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus. Arch Microbiol 163, 112–118.[CrossRef] [Google Scholar]
  39. Vorholt, J. A., Hafenbradl, D., Stetter, K. O. & Thauer, R. K.(1997). Pathways of autotrophic CO2 fixation and of dissimilatory nitrate reduction to N2O in Ferroglobus placidus. Arch Microbiol 167, 19–23.[CrossRef] [Google Scholar]
  40. Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A. & Stahl, D. A.(1998). Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180, 2975–2982. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65422-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65422-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error