1887

Abstract

Two Gram-negative, rod-shaped, non-spore-forming bacterial strains were isolated from a hexane-treated, full-scale biofilter from an oil mill. The strains were cultivated with hexane as the sole carbon source. One strain, MN154.3, showed a fatty acid profile that contained 16 : 0, 18 : 111 and 19 : 0 cyclo11–12 as major compounds, while the second strain, isolate MN28, contained 14 : 0 3-OH, 16 : 0 and 18 : 111 as the predominant fatty acids. On the basis of almost-complete 16S rRNA gene sequences, both strains could be allocated to the branch of the class . The sequence similarities for strains MN154.3 and MN28 with respect to the most closely related type strains of this branch were 90.5 and 94.1 %, respectively. The sequence similarity between strains MN154.3 and MN28 was 90.6 %. The DNA G+C content of strain MN154.3 was 62.8 mol% and that for strain MN28 was 64.9 mol%. Both strains possessed ubiquinone-8 as the major quinone. On the basis of the 16S rRNA gene sequences of these two new isolates and several phenotypic differences exhibited with respect to known species of the branch, strains MN154.3 and MN28 represent two novel genera and species, for which the names gen. nov., sp. nov. and gen. nov., sp. nov. are proposed. The type strain of gen. nov., sp. nov. is MN154.3 (=DSM 14804=LMG 22842) and that of gen. nov., sp. nov. is MN28 (=DSM 15731=LMG 22844).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65517-0
2008-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/10/2324.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65517-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef] [Google Scholar]
  2. An, D. S., Im, W. T., Yang, H. C., Yang, D. C. & Lee, S. T.(2005).Dyella koreensis sp. nov., a β-glucosidase-producing bacterium. Int J Syst Evol Microbiol 55, 1625–1628.[CrossRef] [Google Scholar]
  3. Finkmann, W., Altendorf, K., Stackebrandt, E. & Lipski, A.(2000). Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 50, 273–282.[CrossRef] [Google Scholar]
  4. Friedrich, U., Prior, K., Altendorf, K. & Lipski, A.(2002). High bacterial diversity of a waste gas-degrading community in an industrial biofilter as shown by a 16S rDNA clone library. Environ Microbiol 4, 721–734.[CrossRef] [Google Scholar]
  5. IUPAC-IUB Commission on Biochemical Nomenclature(1977). The nomenclature of lipids: recommendations, 1976. Eur J Biochem 79, 11–21.[CrossRef] [Google Scholar]
  6. Juteau, P., Larocque, R., Rho, D. & LeDuy, A.(1999). Analysis of the relative abundance of different types of bacteria capable of toluene degradation in a compost biofilter. Appl Microbiol Biotechnol 52, 863–868.[CrossRef] [Google Scholar]
  7. Kim, M. K., Im, W. T., In, J. G., Kim, S. H. & Yang, D. C.(2006).Thermomonas koreensis sp. nov., a mesophilic bacterium isolated from a ginseng field. Int J Syst Evol Microbiol 56, 1615–1619.[CrossRef] [Google Scholar]
  8. Kim, M. K., Kim, Y.-J., Cho, D.-H., Yi, T.-H., Soung, N.-K. & Yang, D.-C.(2007).Solimonas soli gen. nov., sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 57, 2591–2594.[CrossRef] [Google Scholar]
  9. Kroppenstedt, R. M.(1982). Anwendung chromatographischer HP-Verfahren (HPTLC und HPLC) in der Bakterien-Taxonomie. GIT Lab Med 5, 266–276 (in German). [Google Scholar]
  10. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  11. Lee, E. M., Jeon, C. O., Choi, I., Chang, K. S. & Kim, C. J.(2005).Silanimonas lenta gen. nov., sp. nov., a slightly thermophilic and alkaliphilic gammaproteobacterium isolated from a hot spring. Int J Syst Evol Microbiol 55, 385–389.[CrossRef] [Google Scholar]
  12. Lipski, A. & Altendorf, K.(1997). Identification of heterotrophic bacteria isolated from ammonia-supplied experimental biofilters. Syst Appl Microbiol 20, 448–457.[CrossRef] [Google Scholar]
  13. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  14. Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A. & Parlett, J. H.(1984). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2, 233–241.[CrossRef] [Google Scholar]
  15. Palleroni, N. J., Port, A. M., Chang, H. K. & Zylstra, G. J.(2004).Hydrocarboniphaga effusa gen. nov., sp. nov., a novel member of the γ-Proteobacteria active in alkane and aromatic hydrocarbon degradation. Int J Syst Evol Microbiol 54, 1203–1207.[CrossRef] [Google Scholar]
  16. Saddler, G. S. & Bradbury, J. F.(2005). Family I. Xanthomonadaceae fam. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2 (The Proteobacteria), part B (The Gammaproteobacteria), p. 63. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  17. Sasser, M.(1990). Identification of bacteria through fatty acid analysis. In Methods in Phytobacteriology, pp. 199–204. Edited by Z. Klement, K. Rudolph & D. C. Sands. Budapest: Akademiai Kiado.
  18. Stürmeyer, H., Overmann, J., Babenzien, H.-D. & Cypionka, H.(1998). Ecophysiological and phenotypic studies of Nevskia ramosa in pure culture. Appl Environ Microbiol 64, 1890–1894. [Google Scholar]
  19. Wells, J. M., Raju, B. C., Hung, H.-Y., Weisburg, W. G., Mandelco-Paul, L. & Brenner, D. J.(1987).Xylella fastidiosa gen. nov., sp. nov: gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int J Syst Bacteriol 37, 136–143.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65517-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65517-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error