1887

Abstract

A Gram-negative, non-motile, aerobic bacterium, designated strain KOPRI 20941, was isolated from a sample of marine sediment from Ny Ålesund, Spitsbergen, Norway. A phylogenetic analysis based on 16S rRNA gene sequences revealed that the Arctic isolate nested within the genus and showed the highest sequence similarity (98.1 %) with respect to KMM 3947. Chemotaxonomic data (DNA G+C content of 36 mol%; MK-6 as the major respiratory quinone and iso-C 3-OH, C 7/iso-C 2-OH and iso-C as the major fatty acids) supported the affiliation of strain KOPRI 20941 to the genus . The results of phylogenetic analyses, physiological and biochemical tests and a DNA–DNA reassociation test (<54 % relatedness) allowed genotypic and phenotypic differentiation of the strain from the recognized species of the genus . Therefore strain KOPRI 20941 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is KOPRI 20941 (=KCTC 22053=JCM 14790).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65549-0
2008-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/6/1300.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65549-0&mimeType=html&fmt=ahah

References

  1. Bae, S. S., Kwon, K. K., Yang, S. H., Lee, H.-S., Kim, S.-J. & Lee, J.-H.(2007).Flagellimonas eckloniae gen. nov., sp. nov., a mesophilic marine bacterium of the family Flavobacteriaceae, isolated from the rhizosphere of Ecklonia kurome. Int J Syst Evol Microbiol 57, 1050–1054.[CrossRef] [Google Scholar]
  2. Bernardet, J.-F., Nakagawa, Y. & Holmes, B.(2002). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52, 1049–1070.[CrossRef] [Google Scholar]
  3. Bowman, J. P.(2000). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50, 1861–1868. [Google Scholar]
  4. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y. W.(2007). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequence. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef] [Google Scholar]
  5. Collins, M. D.(1985). Analysis of isoprenoid quinones. Methods Microbiol 18, 329–366. [Google Scholar]
  6. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  7. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  8. Huß, V. A. R., Festl, H. & Schleifer, K. H.(1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef] [Google Scholar]
  9. Jeon, Y. S., Chung, H., Park, S., Hur, I., Lee, J. H. & Chun, J.(2005). jphydit: a java-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21, 3171–3173.[CrossRef] [Google Scholar]
  10. Johnson, J. L.(1985). Determination of DNA base composition. Methods Microbiol 18, 1–31. [Google Scholar]
  11. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  12. Mandel, M., Lgambi, L., Bergendahl, J., Dodson, M. L. & Scheltgen, E.(1970). Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J Bacteriol 101, 333–338. [Google Scholar]
  13. Marmur, J. & Doty, P.(1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef] [Google Scholar]
  14. Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A. & Parlett, J. H.(1984). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2, 233–241.[CrossRef] [Google Scholar]
  15. Nedashkovskaya, O. I., Kim, S. B., Han, S. K., Lysenko, A. M., Rohde, M., Rhee, M. S., Frolova, G. M., Falsen, E., Mikhailov, V. V. & Bae, K. S.(2004).Maribacter gen. nov., a new member of the family Flavobacteriaceae, isolated from marine habitats, containing the species Maribacter sedimenticola sp. nov., Maribacter aquivivus sp. nov., Maribacter orientalis sp. nov. and Maribacter ulvicola sp. nov. Int J Syst Evol Microbiol 54, 1017–1023.[CrossRef] [Google Scholar]
  16. Sohn, J. H., Kwon, K. K., Kang, J.-H., Jung, H.-B. & Kim, S.-J.(2004).Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54, 1483–1487.[CrossRef] [Google Scholar]
  17. Swofford, D. L.(2002).paup*: Phylogenetic analysis using parsimony (and other methods), version 4. Sunderland, MA: Sinauer Associates.
  18. Yoon, J.-H., Kang, S.-J., Lee, S.-Y., Lee, C.-H. & Oh, T.-K.(2005).Maribacter dokdonensis sp. nov., isolated from sea water off a Korean island, Dokdo. Int J Syst Evol Microbiol 55, 2051–2055.[CrossRef] [Google Scholar]
  19. ZoBell, C. E.(1946).Marine Microbiology: a Monograph on Hydrobacteriology. Waltham, MA: Chronica Botanica
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65549-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65549-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error