1887

Abstract

Three thermophilic, aerobic, hydrogen- and sulfur-oxidizing bacteria were isolated from an Icelandic hot spring near the town of Hveragerdi and share >99 % 16S rRNA gene sequence similarity. One of these isolates, designated strain I6628, was selected for further characterization. Strain I6628 is a motile rod, 1.5–2.5 μm long and about 0.5 μm wide. Growth occurred between 40 and 73 °C (optimally at 68 °C), at pH 5.3–7.8 (optimally at pH 6.6) and at NaCl concentrations between 0 and 0.5 % (w/v). Strain I6628 grew with H, S or as an electron donor with O (up to 25 %, v/v; optimally at 4–9 %) as the sole electron acceptor. CO and succinate were utilized as carbon sources but no organic compounds, including succinate, could be used as an energy source. The G+C content of the genomic DNA was determined to be 28.1 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain I6628 is a member of the genus , the closest cultivated relative being the recently described strain UZ3-5 (98.2 % sequence similarity). On the basis of the physiology and phylogeny of this organism, strain I6628 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is I6628 (=DSM 19534 =OCM 901 =ATCC BAA-1535).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65570-0
2008-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/5/1153.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65570-0&mimeType=html&fmt=ahah

References

  1. Aguiar, P., Beveridge, T. J. & Reysenbach, A.-L.(2004).Sulfurihydrogenibium azorense sp. nov., a thermophilic hydrogen-oxidizing microaerophile from terrestrial hot springs in the Azores. Int J Syst Evol Microbiol 54, 33–39.[CrossRef] [Google Scholar]
  2. Barion, S., Franchi, M., Gallori, E. & Di Giulio, M.(2007). The first lines of divergence in the Bacteria domain were the hyperthermophilic organisms, the Thermotogales and the Aquificales, and not the mesophilic Planctomycetales. Biosystems 87, 13–19.[CrossRef] [Google Scholar]
  3. Beveridge, T. J., Moyles, D. & Harris, R.(2007). Electron microscopy. In Methods for General and Molecular Microbiology, 2nd edn, pp. 54–81. Edited by C. A. Reddy, T. J. Beveridge, J. A. Breznak, L. Snyder, T. M. Schmidt & G. A. Marzluf. Washington, DC: American Society for Microbiology.
  4. Boone, D. R., Johnson, R. L. & Liu, Y.(1989). Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl Environ Microbiol 55, 1735–1741. [Google Scholar]
  5. Burggraf, S., Olsen, G. J., Stetter, K. O. & Woese, C. R.(1992). A phylogenetic analysis of Aquifex pyrophilus. Syst Appl Microbiol 15, 352–356.[CrossRef] [Google Scholar]
  6. Chong, S. C., Liu, Y., Cummins, M., Valentine, D. L. & Boone, D. R.(2002).Methanogenium marinum sp. nov., a H2-using methanogen from Skan Bay, Alaska, and kinetics of H2 utilization. Antonie van Leeuwenhoek 81, 263–270.[CrossRef] [Google Scholar]
  7. Di Giulio, M.(2003a). The ancestor of the Bacteria domain was a hyperthermophile. J Theor Biol 224, 277–283.[CrossRef] [Google Scholar]
  8. Di Giulio, M.(2003b). The universal ancestor and the ancestor of the Bacteria were hyperthermophiles. J Mol Evol 57, 721–730.[CrossRef] [Google Scholar]
  9. Di Giulio, M.(2003c). The universal ancestor was a thermophile or a hyperthermophile: tests and further evidence. J Theor Biol 221, 425–436.[CrossRef] [Google Scholar]
  10. Eder, W. & Huber, R.(2002). New isolates and physiological properties of the Aquificales and description of Thermocrinis albus ap. nov. Extremophiles 6, 309–318.[CrossRef] [Google Scholar]
  11. Ferguson, T. J. & Mah, R. A.(1983). Isolation and characterization of an H2-oxidizing methanogen. Appl Environ Microbiol 45, 265–274. [Google Scholar]
  12. Ferrera, I., Longhorn, S., Banta, A. B., Liu, Y., Preston, D. & Reysenbach, A.-L.(2007). Diversity of 16S rRNA gene, ITS region and aclB gene of the Aquificales. Extremophiles 11, 57–64.[CrossRef] [Google Scholar]
  13. Götz, D., Banta, A., Beveridge, T. J., Rushdi, A. I., Simoneit, B. R. T. & Reysenbach, A.-L.(2002).Persephonella marina gen. nov., sp nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52, 1349–1359.[CrossRef] [Google Scholar]
  14. Hetzer, A., Morgan, H. W., McDonald, I. R. & Daughney, C. J.(2007). Microbial life in Champagne Pool, a geothermal spring in Waiotapu, New Zealand. Extremophiles 11, 605–614.[CrossRef] [Google Scholar]
  15. Huber, R., Eder, W., Heldwein, S., Wanner, G., Huber, H., Rachel, R. & Stetter, K. O.(1998).Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64, 3576–3583. [Google Scholar]
  16. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  17. Marmur, J. & Doty, P.(1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef] [Google Scholar]
  18. Nakagawa, S., Shtaih, Z., Banta, A., Beveridge, T. J., Sako, Y. & Reysenbach, A.-L.(2005).Sulfurihydrogenibium yellowstonense sp. nov., an extremely thermophilic, facultatively heterotrophic, sulfur-oxidizing bacterium from Yellowstone National Park, and emended descriptions of the genus Sulfurihydrogenibium, Sulfurihydrogenibium subterraneum and Sulfurihydrogenibium azorense. Int J Syst Evol Microbiol 55, 2263–2268.[CrossRef] [Google Scholar]
  19. O'Neill, A. H., Liu, Y., Ferrera, I., Beveridge, T. J. & Reysenbach, A.-L.(2008).Sulfurihydrogenibium rodmanii sp. nov., a sulfur-oxidizing chemolithoautotroph from the Uzon Caldera, Kamchatka, Russia, and emended description of the genus Sulfurihydrogenibium. Int J Syst Evol Microbiol 58, 1147(). –1152.[CrossRef] [Google Scholar]
  20. Pitulle, C., Yang, Y. Q., Marchiani, M., Moore, E. R. B., Siefert, J. L., Aragno, M., Jurtshuk, P. & Fox, G. E.(1994). Phylogenetic position of the genus Hydrogenobacter. Int J Syst Bacteriol 44, 620–626.[CrossRef] [Google Scholar]
  21. Purcell, D., Sompong, U., Yim, L. C., Barraclough, T. G., Peerapornpisal, Y. & Pointing, S. B.(2007). The effects of temperature, pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand. FEMS Microbiol Ecol 60, 456–466.[CrossRef] [Google Scholar]
  22. Reysenbach, A.-L., Ehringer, M. & Hershberger, K.(2000). Microbial diversity at 8 °C in Calcite Springs, Yellowstone National Park: another environment where the Aquificales and “Korarchaeota” coexist. Extremophiles 4, 61–67. [Google Scholar]
  23. Reysenbach, A.-L., Banta, A., Civello, S., Daly, J., Mitchel, K., Lalonde, S., Konhauser, K., Rodman, S., Rustenholtz, K. & Takacs-Vesbach, C.(2005). The Aquificales of Yellowstone National Park. In Geothermal Biology and Geochemistry in Yellowstone National Park: Workshop Proceedings from the Thermal Biology Institute's Yellowstone National Park Conference, October 2003, pp. 129–142. Edited by W. P. Inskeep & T. R. McDermott. Bozeman, MT: Montana State University.
  24. Skirnisdottir, S., Hreggvidsson, G. O., Hjorleifsdottir, S., Marteinsson, V. T., Petursdottir, S. K., Holst, O. & Kristjansson, J. K.(2000). Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66, 2835–2841.[CrossRef] [Google Scholar]
  25. Spear, J. R., Walker, J. J., McCollom, T. M. & Pace, N. R.(2005). Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc Natl Acad Sci U S A 102, 2555–2560.[CrossRef] [Google Scholar]
  26. Stöhr, R., Waberski, A., Völker, H., Tindall, B. J. & Thomm, M.(2001).Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophiulm gen. nov., comb. nov., in the phylum ‘Hydrogenobacter/Aquifex’. Int J Syst Evol Microbiol 51, 1853–1862.[CrossRef] [Google Scholar]
  27. Swofford, D. L.(2003).paup*: Phylogenetic analysis using parsimony (and other methods). Sunderland, MA: Sinauer Associates.
  28. Takacs, C. D., Ehringer, M., Favre, R., Cermola, M., Eggertsson, G., Palsdottir, A. & Reysenbach, A.-L.(2001). Phylogenetic characterization of the blue filamentous bacterial community from an Icelandic geothermal spring. FEMS Microbiol Ecol 35, 123–128.[CrossRef] [Google Scholar]
  29. Takai, K., Kobayashi, Y., Nealson, K. H. & Horikoshi, K.(2003).Sulfurihydrogenibium subterraneum gen. nov., sp. nov., from a subsurface hot aquifer. Int J Syst Evol Microbiol 53, 823–827.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65570-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65570-0
Loading

Data & Media loading...

Supplements

Effects of temperature (S1; left) and pH (S2; right) on growth of strain I6628 .

IMAGE

Effects of temperature (S1; left) and pH (S2; right) on growth of strain I6628 .

IMAGE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error