1887

Abstract

A Gram-positive, endospore-forming, rod-shaped bacterium, designated strain B519, was isolated from a desert sand sample of Gansu Province, China. Strain B519 was strictly aerobic and cells were motile by means of peritrichous flagella. The strain grew optimally at 32–35 °C and pH 6.5–7.0. Chemotaxonomic data supported the affiliation of the new isolate to the genus , including menaquinone-7 (MK-7) as the major isoprenoid quinone, DNA G+C content of 49.9 mol%, cell-wall type A1 (-diaminopimelic acid as the diagnostic diamino acid) and anteiso-C, iso-C, C and iso-C as the major fatty acids. Comparative 16S rRNA gene sequence analysis showed that strain B519 was most closely related to KSL-134 (98.0 % similarity). DNA–DNA relatedness between strain B519 and KSL-134 was about 12.3 %. On the basis of phenotypic characteristics and molecular properties, strain B519 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is B519 (=KCTC 3951 =DSM 16969).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65664-0
2009-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/1/13.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65664-0&mimeType=html&fmt=ahah

References

  1. Ash, C., Priest, F. G. & Collins, M. D.(1993). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64, 253–260. [Google Scholar]
  2. Baumann, L. & Baumann, P.(1981). The marine Gram-negative eubacteria; genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In The Prokaryotes. A Handbook on Habitats, Isolation, and Identification of Bacteria, pp. 1302–1330. Edited by M. P. Starr, H. Stolp, H. G. Trüper, A. Balows & H. G. Schlegel. Berlin: Springer.
  3. Chou, J. H., Chou, Y. J., Lin, K. Y., Sheu, S. Y., Sheu, D. S., Arun, A. B., Young, C. C. & Chen, W. M.(2007).Paenibacillus fonticola sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 57, 1346–1350.[CrossRef] [Google Scholar]
  4. Cohen-Bazire, G., Sistrom, W. R. & Stanier, R. Y.(1957). Kinetic studies of pigment synthesis by nonsulfur purple bacteria. J Cell Comp Physiol 49, 25–68.[CrossRef] [Google Scholar]
  5. Daane, L. L., Harjono, I., Barns, S. M., Launen, L. A., Palleron, N. J. & Haggblom, M. M.(2002). PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Evol Microbiol 52, 131–139. [Google Scholar]
  6. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  7. Felsenstein, J.(2002).phylip (phylogeny inference package), version 3.6a. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  8. Gomori, G.(1955). Preparation of buffers for use in enzyme studies. Methods Enzymol 1, 138–146. [Google Scholar]
  9. Jeon, C. O., Lim, J. M., Lee, J. M., Xu, L. H., Jiang, C. L. & Kim, C. J.(2005). Reclassification of Bacillus haloalkaliphilus Fritze 1996 as Alkalibacillus haloalkaliphilus gen. nov., comb. nov. and the description of Alkalibacillus salilacus sp. nov., a novel halophilic bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 55, 1891–1896.[CrossRef] [Google Scholar]
  10. Komagata, K. & Suzuki, K.(1987). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207. [Google Scholar]
  11. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  12. Lányí, B.(1987). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19, 1–67. [Google Scholar]
  13. Leifson, E.(1963). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85, 1183–1184. [Google Scholar]
  14. Lim, J.-M., Jeon, C. O., Lee, J.-C., Xu, L. H., Jiang, C. L. & Kim, C.-J.(2006).Paenibacillus gansuensis sp. nov., isolated from desert soil of Gansu Province in China. Int J Syst Evol Microbiol 56, 2131–2134.[CrossRef] [Google Scholar]
  15. Montes, M. J., Mercade, E., Bozal, N. & Guinea, J.(2004).Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 54, 1521–1526.[CrossRef] [Google Scholar]
  16. Park, M. J., Kim, H. B., An, D. S., Yang, H. C., Oh, S. T., Chung, H. J. & Yang, D. C.(2007).Paenibacillus soli sp. nov., a xylanolytic bacterium isolated from soil. Int J Syst Evol Microbiol 57, 146–150.[CrossRef] [Google Scholar]
  17. Rivas, R., Gutierrez, C., Abril, A., Mateos, P. F., Martinez-Molina, E., Ventosa, A. & Velazquez, E.(2005).Paenibacillus rhizosphaerae sp. nov., isolated from the rhizosphere of Cicer arietinum. Int J Syst Evol Microbiol 55, 1305–1309.[CrossRef] [Google Scholar]
  18. Rosselló-Mora, R. & Amann, R.(2001). The species concept for prokaryotes. FEMS Microbiol Rev 25, 39–67.[CrossRef] [Google Scholar]
  19. Saha, P., Mondal, A. K., Mayilraj, S., Krishnamurthi, S., Bhattacharya, A. & Chakrabarti, T.(2005).Paenibacillus assamensis sp. nov., a novel bacterium isolated from a warm spring in Assam, India. Int J Syst Evol Microbiol 55, 2577–2581.[CrossRef] [Google Scholar]
  20. Sánchez, M. M., Fritze, D., Blanco, A., Sproer, C., Tindall, B. J., Schumann, P., Kroppenstedt, R. M., Diaz, P. & Pastor, F. I.(2005).Paenibacillus barcinonensis sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro River delta. Int J Syst Evol Microbiol 55, 935–939.[CrossRef] [Google Scholar]
  21. Schleifer, K. H.(1985). Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18, 123–156. [Google Scholar]
  22. Shida, O., Takagi, H., Kadowaki, K., Nakamura, L. K. & Komagata, K.(1997). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47, 289–298.[CrossRef] [Google Scholar]
  23. Šmerda, J., Sedláček, I., Páčová, Z., Durnová, E., Smíšková, A. & Havel, L.(2005).Paenibacillus mendelii sp. nov., from surface-sterilized seeds of Pisum sativum L. Int J Syst Evol Microbiol 55, 2351–2354.[CrossRef] [Google Scholar]
  24. Smibert, R. M. & Krieg, N. R.(1981). General characterization. In Manual of Methods for General Microbiology, pp. 409–443. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  25. Smibert, R. M. & Krieg, N. R.(1994). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt. Washington, DC: American Society for Microbiology.
  26. Staley, J. T.(1968).Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 95, 1921–1942. [Google Scholar]
  27. Takeda, M., Suzuki, I. & Koizumi, J.(2005).Paenibacillus hodogayensis sp. nov., capable of degrading the polysaccharide produced by Sphaerotilus natans. Int J Syst Evol Microbiol 55, 737–741.[CrossRef] [Google Scholar]
  28. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  29. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  30. Uetanabaro, A. P., Wahrenburg, C., Hunger, W., Pukall, R., Spröer, C., Stackebrandt, E., De Canhos, V. P., Claus, D. & Fritze, D.(2003).Paenibacilus agarexedens sp. nov., nom. rev., and Paenibacillus agaridevorans sp. nov. Int J Syst Evol Microbiol 53, 1051–1057.[CrossRef] [Google Scholar]
  31. van der Maarel, M. J. E. C., Veen, A. & Wijbenga, D. J.(2000).Paenibacillus granivorans sp. nov., a new Paenibacillus species which degrades native potato starch granules. Syst Appl Microbiol 23, 344–348.[CrossRef] [Google Scholar]
  32. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  33. Yoon, J.-H., Kang, S.-J., Yeo, S.-H. & Oh, T.-K.(2005).Paenibacillus alkaliterrae sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol 55, 2339–2344.[CrossRef] [Google Scholar]
  34. Yoon, M. H., Ten, L. N. & Im, W. T.(2007).Paenibacillus ginsengarvi sp. nov., isolated from soil from ginseng cultivation. Int J Syst Evol Microbiol 57, 1810–1814.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65664-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65664-0
Loading

Data & Media loading...

Supplements

Transmission electron micrograph showing general morphology of a negatively stained cell of strain B519 after growth for 2 days at 32 °C on R2A. Bar, 1 µm.

IMAGE

Extended neighbour-joining and maximum-parsimony trees showing phylogenetic relationships of strain B519 and related taxa. [PDF](22 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error