1887

Abstract

A Gram-positive, alkaliphilic bacterium, designated strain BA288, was isolated from sandy soil. Cells were facultatively anaerobic, endospore-forming rods that were motile by means of peritrichous flagella. The strain grew at 15–40 °C and pH 7.0–11.0 (optimally at 30 °C and pH 9.0–9.5) and at salinities of 0–4 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain BA288 belonged to the genus and that D-1,5a, LMG 22167, DSM 6307 and SW-211 were the closest neighbours (96.2, 96.0, 96.0 and 95.9 % sequence similarity, respectively). The genomic DNA G+C content was 37.9 mol% and the predominant menaquinone was MK-7. The major cellular fatty acids were anteiso-C, iso-C, C and iso-C. The peptidoglycan type was A1 (-diaminopimelic acid). Therefore, on the basis of phylogenetic, phenotypic and chemotaxonomic properties, strain BA288 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is BA288 (=KCTC 3947 =DSM 16976).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65733-0
2008-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/11/2629.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65733-0&mimeType=html&fmt=ahah

References

  1. Agnew, M. D., Koval, S. F. & Jarrell, K. F.(1995). Isolation and characterization of novel alkaliphiles from bauxite-processing waste and description of Bacillus vedderi sp. nov., a new obligate alkaliphile. Syst Appl Microbiol 18, 221–230.[CrossRef] [Google Scholar]
  2. Ajithkumar, V. P., Ajithkumar, B., Lriye, R. & Sakai, T.(2002).Bacillus funiculus sp. nov., filamentous isolates from activated sludge. Int J Syst Evol Microbiol 52, 1141–1144.[CrossRef] [Google Scholar]
  3. Arahal, D. R., Marquez, M. C., Volcani, B. E., Schleifer, K. H. & Ventosa, A.(1999).Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea. Int J Syst Bacteriol 49, 521–530.[CrossRef] [Google Scholar]
  4. Bates, R. G. & Bower, V. E.(1956). Alkaline solutions for pH control. Anal Chem 28, 1322–1324.[CrossRef] [Google Scholar]
  5. Claus, D. & Berkeley, R. C. W.(1986). Genus Bacillus Cohn 1872. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1105–1140. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Wilkins.
  6. Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam-Syed-Mohideen, A. S., McGarrell, D. M., Bandela, A. M., Cardenas, E., Garrity, G. M. & Tiedje, J. M.(2007). The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35, D169–D172.[CrossRef] [Google Scholar]
  7. Cowan, S. T. & Steel, K. J.(1965).Manual for the Identification of Medical Bacteria. London: Cambridge University Press.
  8. De Clerck, E., Rodríguez-Díaz, M., Vanhoutte, T., Heyman, J., Logan, N. A. & De Vos, P.(2004).Anoxybacillus contaminans sp. nov. and Bacillus gelatini sp. nov., isolated from contaminated gelatin batches. Int J Syst Evol Microbiol 54, 941–946.[CrossRef] [Google Scholar]
  9. DeLong, E. F.(1992). Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89, 5685–5689.[CrossRef] [Google Scholar]
  10. Duckworth, A. W., Grant, W. D., Jones, B. E. & Steenbergen, R. V.(1996). Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19, 181–191.[CrossRef] [Google Scholar]
  11. Felsenstein, J.(1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef] [Google Scholar]
  12. Felsenstein, J.(2002).phylip (phylogeny inference package), version 3.6a. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  13. Fritze, D.(1996).Bacillus haloalkaliphilus sp. nov. Int J Syst Bacteriol 46, 98–101.[CrossRef] [Google Scholar]
  14. Ghosh, A., Bhardwaj, M., Satyanarayana, T., Khurana, M., Mayilraj, S. & Jain, R. K.(2007).Bacillus lehensis sp. nov., an alkalitolerant bacterium isolated from soil. Int J Syst Evol Microbiol 57, 238–242.[CrossRef] [Google Scholar]
  15. Gomori, G.(1955). Preparation of buffers for use in enzyme studies. Methods Enzymol 1, 138–146. [Google Scholar]
  16. Hasegawa, T., Takizawa, M. & Tanida, S.(1983). A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29, 319–322.[CrossRef] [Google Scholar]
  17. Heyrman, J., Rodríguez-Díaz, M., Devos, J., Felske, A., Logan, N. A. & De Vos, P.(2005).Bacillus arenosi sp. nov., Bacillus arvi sp. nov. and Bacillus humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 55, 111–117.[CrossRef] [Google Scholar]
  18. Kämpfer, P.(1994). Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17, 86–98.[CrossRef] [Google Scholar]
  19. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  20. Kluge, A. G. & Farris, F. S.(1969). Quantitative phyletics and the evolution of anurans. Syst Zool 18, 1–32.[CrossRef] [Google Scholar]
  21. Komagata, K. & Suzuki, K.(1987). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207. [Google Scholar]
  22. Krulwich, T. A. & Guffanti, A. A.(1989). Alkalophilic bacteria. Annu Rev Microbiol 43, 435–463.[CrossRef] [Google Scholar]
  23. Lányí, B.(1987). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19, 1–67. [Google Scholar]
  24. Li, Z., Kawamura, Y., Shida, O., Yamagata, S., Deguchi, T. & Ezaki, T.(2002).Bacillus okuhidensis sp. nov., isolated from the Okuhida spa area of Japan. Int J Syst Evol Microbiol 52, 1205–1209.[CrossRef] [Google Scholar]
  25. Logan, N. A., Lebbe, L., Verhelst, A., Goris, J., Forsyth, G., Rodriguez-Diaz, M., Heyndrickx, M. & De Vos, P.(2002).Bacillus luciferensis sp. nov., from volcanic soil on Candlemas Island, South Sandwich archipelago. Int J Syst Evol Microbiol 52, 1985–1989.[CrossRef] [Google Scholar]
  26. MacKenzie, S. L.(1987). Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70, 151–160. [Google Scholar]
  27. Martins, R. F., Davids, W., Abu Al-Soud, W., Levander, F., Rådström, P. & Hatti-Kaul, R.(2001). Starch-hydrolyzing bacteria from Ethiopian soda lakes. Extremophiles 5, 135–144.[CrossRef] [Google Scholar]
  28. Nielsen, P., Rainey, F. A., Outtrup, H., Priest, F. G. & Fritze, D.(1994). Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus. FEMS Microbiol Lett 117, 16–65.[CrossRef] [Google Scholar]
  29. Nielsen, P., Fritze, D. & Priest, F. G.(1995). Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141, 1745–1761.[CrossRef] [Google Scholar]
  30. Nogi, Y., Takami, H. & Horikoshi, K.(2005). Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 55, 2309–2315.[CrossRef] [Google Scholar]
  31. Olivera, N., Siñeriz, F. & Breccia, J. D.(2005).Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from the rhizosphere of Atriplex lampa in Patagonia, Argentina. Int J Syst Evol Microbiol 55, 443–447.[CrossRef] [Google Scholar]
  32. Priest, F. G., Goodfellow, M. & Todd, C.(1988). A numerical classification of the genus Bacillus. J Gen Microbiol 134, 1847–1882. [Google Scholar]
  33. Reva, O. N., Smirnov, V. V., Pettersson, B. & Priest, F. G.(2002).Bacillus endophyticus sp. nov., isolated from the inner tissues of cotton plants (Gossypium sp.). Int J Syst Evol Microbiol 52, 101–107. [Google Scholar]
  34. Rhuland, L. E., Work, E., Denman, R. F. & Hoare, D. S.(1955). The behavior of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77, 4844–4846.[CrossRef] [Google Scholar]
  35. Rosselló-Mora, R. & Amann, R.(2001). The species concept for prokaryotes. FEMS Microbiol Rev 25, 39–67.[CrossRef] [Google Scholar]
  36. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  37. Schleifer, K. H.(1985). Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18, 123–156. [Google Scholar]
  38. Schleifer, K. H. & Kandler, O.(1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477. [Google Scholar]
  39. Smibert, R. M. & Krieg, N. R.(1981). General characterization. In Manual of Methods for General Microbiology, pp. 409–443. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  40. Smibert, R. M. & Krieg, N. R.(1994). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt. Washington, DC: American Society for Microbiology.
  41. Spanka, R. & Fritze, D.(1993).Bacillus cohnii sp. nov., a new, obligately alkaliphilic, oval-spore-forming Bacillus species with ornithine and aspartic acid instead of diaminopimelic acid in the cell wall. Int J Syst Bacteriol 43, 150–156.[CrossRef] [Google Scholar]
  42. Stackebrandt, E., Frederikson, W., Garrity, G. M., Grimont, P. A. D., Kämpfer, P., Maiden, M. C. J., Nesme, X., Rosselló-Mora, R., Swings, J. & other authors(2002). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52, 1043–1047.[CrossRef] [Google Scholar]
  43. Suresh, K., Prabagaran, S. R., Sengupta, S. & Shivaji, S.(2004).Bacillus indicus sp. nov., an arsenic-resistant bacterium isolated from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 54, 1369–1375.[CrossRef] [Google Scholar]
  44. Switzer Blum, J., Burns Bindi, A., Buzzelli, J., Stolz, J. F. & Oremland, R. S.(1998).Bacillus arsenicoselenatis sp. nov., and Bacillus selenitireducens sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171, 19–30.[CrossRef] [Google Scholar]
  45. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  46. Täubel, M., Kämpfer, P., Buczolits, S., Lubitz, W. & Busse, H.-J.(2003).Bacillus barbaricus sp. nov., isolated from an experimental wall painting. Int J Syst Evol Microbiol 53, 725–730.[CrossRef] [Google Scholar]
  47. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  48. Ulukanli, Z. & Diurak, M.(2002). Alkaliphilic microorganisms and habitats. Turk J Biol 26, 181–191. [Google Scholar]
  49. Vargas, V. A., Delgado, O. D., Hatti-Kaul, R. & Mattiasson, B.(2005).Bacillus bogoriensis sp. nov., a novel alkaliphilic, halotolerant bacterium isolated from a Kenyan soda lake. Int J Syst Evol Microbiol 55, 899–902.[CrossRef] [Google Scholar]
  50. Vedder, A.(1934).Bacillus alcalophilus n. sp.; benevens enkele ervaringen met sterk alcalische voedingbodems. Antonie van Leeuwenhoek 1, 141–147 (in Dutch).[CrossRef] [Google Scholar]
  51. Wieser, M., Worliczek, H., Kämpfer, P. & Busse, H.-J.(2005).Bacillus herbersteinensis sp. nov. Int J Syst Evol Microbiol 55, 2119–2123.[CrossRef] [Google Scholar]
  52. Yoon, J.-H. & Oh, T.-K.(2005).Bacillus litoralis sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55, 1945–1948.[CrossRef] [Google Scholar]
  53. Yoon, J.-H., Lee, C.-H. & Oh, T.-K.(2005).Bacillus cibi sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 55, 733–736.[CrossRef] [Google Scholar]
  54. Yumoto, I., Yamazaki, K., Sawabe, T., Nakano, K., Kawasaki, K., Ezura, Y. & Shinano, H.(1998).Bacillus horti sp. nov., a new Gram-negative alkaliphilic bacillus. Int J Syst Bacteriol 48, 565–571.[CrossRef] [Google Scholar]
  55. Yumoto, I., Yamaga, S., Sogabe, Y., Nodasaka, Y., Matsuyama, H., Nakajima, K. & Suemori, A.(2003).Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m-hydroxybenzoate. Int J Syst Evol Microbiol 53, 1531–1536.[CrossRef] [Google Scholar]
  56. Yumoto, I., Hirota, K., Yamaga, S., Nodasaka, Y., Kawasaki, T., Matsuyama, H. & Nakajima, K.(2004).Bacillus asahii sp. nov., a novel bacterium isolated from soil with the ability to deodorize the bad smell generated from short-chain fatty acids. Int J Syst Evol Microbiol 54, 1997–2001.[CrossRef] [Google Scholar]
  57. Yumoto, I., Hirota, K., Goto, T., Nodasaka, Y. & Nakajima, K.(2005).Bacillus oshimensis sp. nov., a moderately halophilic, non-motile alkaliphile. Int J Syst Evol Microbiol 55, 907–911.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65733-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65733-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 2629 - 2634

Maximum-likelihood (Fig. S1) and maximum-parsimony (Fig. S2) phylogenetic trees, based on 16S rRNA gene sequences, showing the relationships between strain BA 288 and related taxa. Numbers at branching nodes are bootstrap percentages (based on 1000 replications); only values ≥50% are indicated. Bars, 0.1 substitutions per nucleotide position. [PDF](29 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error