1887

Abstract

An examination of the results of phylogenetic analyses based on the sequences of fragments of the 16S rRNA, and genes, and the discrimination of genomovars based on siderophore diversity within the genus , has added important taxonomic tools in the characterization of . Eighteen reference strains, nine newly identified hydrocarbon-degrading strains and three strains showing relevant physiological characteristics of , together with the type strains of four related species, were included in the study. A novel genomovar within the species is described. A summary of the methodology used in these studies and the results of our attempts to define a solid internal subdivision of this important species within the genus are presented and discussed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65797-0
2008-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/10/2309.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65797-0&mimeType=html&fmt=ahah

References

  1. Cladera, A. M., Bennasar, A., Barceló, M., Lalucat, J. & García-Valdés, E.(2004). Comparative genetic diversity of Pseudomonas stutzeri genomovars, clonal structure, and phylogeny of the species. J Bacteriol 186, 5239–5248.[CrossRef] [Google Scholar]
  2. Cladera, A. M., Sepúlveda-Torres, L. del C., Valens-Vadell, M., Meyer, J. M., Lalucat, J. & García-Valdés, E.(2006). A detailed phenotypic and genotypic description of Pseudomonas strain OX1. Syst Appl Microbiol 29, 422–430.[CrossRef] [Google Scholar]
  3. Felsenstein, J.(1989).phylip – phylogeny inference package (version 3.2). Cladistics 5, 164–166. [Google Scholar]
  4. Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P. & Tiedje, J. M.(2007). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57, 81–91.[CrossRef] [Google Scholar]
  5. Guasp, C.(1999).Métodos moleculares de estudio de las poblaciones de Pseudomonas stutzeri. PhD thesis, Universitat de les Illes Balears, Spain (in Spanish).
  6. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  7. Lalucat, J., Bennasar, A., Bosch, R., García-Valdés, E. & Palleroni, N. J.(2006). Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 70, 510–547.[CrossRef] [Google Scholar]
  8. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  9. Metcalf, W. W. & Wolfe, R.(1998). Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88. J Bacteriol 180, 5547–5558. [Google Scholar]
  10. Meyer, J. M.(2007). Siderotyping and bacterial taxonomy: a siderophore bank for a rapid identification at the species level of fluorescent and non-fluorescent Pseudomonas. In Soil Biology, vol. 12, Microbial Siderophores, pp. 43–66. Edited by A. Varma & S. B. Chincholkar. Berlin & Heidelberg: Springer.
  11. Meyer, J. M., Stinzi, A., de Vos, D., Cornelis, P., Tappe, R., Taraz, K. & Budzikiewicz, H.(1997). Use of siderophores to type Pseudomonas: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology 143, 35–43.[CrossRef] [Google Scholar]
  12. Meyer, J. M., Geoffroy, V. A., Baida, N., Gardan, L., Izard, D., Lemanceau, P., Achouak, W. & Palleroni, N. J.(2002). Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl Environ Microbiol 68, 2745–2753.[CrossRef] [Google Scholar]
  13. Meyer, J. M., Gruffaz, G., Tulkki, T. & Izard, D.(2007). Taxonomic heterogeneity, as shown by siderotyping, of strains primarily identified as Pseudomonas putida. Int J Syst Evol Microbiol 57, 2543–2556.[CrossRef] [Google Scholar]
  14. Miller, J. H.(1972). Assay for β-galactosidase. In Experiments in Molecular Genetics, pp. 352–355. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  15. Page, R. D. M.(1996). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358. [Google Scholar]
  16. Posada, D. & Crandall, K. A.(1998).modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef] [Google Scholar]
  17. Romanenko, L. A., Uchino, M., Falsen, E., Lysenko, A., Zhukova, N. V. & Mikhailov, V.(2005).Pseudomonas xanthomarina sp. nov., a novel bacterium isolated from marine ascidian. J Gen Appl Microbiol 51, 65–71.[CrossRef] [Google Scholar]
  18. Rosselló, R. A., García-Valdés, E., Lalucat, J. & Ursing, J.(1991). Genotypic and phenotypic diversity of Pseudomonas stutzeri. Syst Appl Microbiol 14, 150–157.[CrossRef] [Google Scholar]
  19. Rosselló-Mora, R. A., Lalucat, J. & Moore, E. R. B.(1996). Strain JM300 represents a new genomovar within Pseudomonas stutzeri. Syst Appl Microbiol 19, 596–599.[CrossRef] [Google Scholar]
  20. Schwyn, B. & Neilands, J. B.(1987). Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160, 47–56.[CrossRef] [Google Scholar]
  21. Sepúlveda-Torres, L. C., Zhou, J. Z., Guasp, C., Lalucat, J., Knaebel, D., Plank, J. L. & Criddle, C. S.(2001).Pseudomonas sp. strain KC represents a new genomovar within Pseudomonas stutzeri. Int J Syst Evol Microbiol 51, 2013–2019.[CrossRef] [Google Scholar]
  22. Sikorski, J., Lalucat, J. & Wackernagel, S.(2005). Genomovars 11 to 18 of Pseudomonas stutzeri identified among isolates from soil and marine sediment. Int J Syst Evol Microbiol 55, 1767–1770.[CrossRef] [Google Scholar]
  23. Song, B., Palleroni, N. J. & Häggblom, M.(2000). Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl Environ Microbiol 66, 3446–3453.[CrossRef] [Google Scholar]
  24. Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P. A. D., Kämpfer, P., Maiden, M. C. J., Nesme, X., Rosselló-Mora, R., Swings, J. & other authors(2002). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52, 1043–1047.[CrossRef] [Google Scholar]
  25. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997).clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  26. Ursing, J. B., Rosselló-Mora, R. A., García-Valdés, E. & Lalucat, J.(1995). A pragmatic approach to the nomenclature of phenotypically similar genomic groups. Int J Syst Bacteriol 45, 604[CrossRef] [Google Scholar]
  27. Yamamoto, S., Ksai, H., Arnold, D. L., Jackson, R. W., Vivian, A. & Harayama, S.(2000). Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146, 2385–2394. [Google Scholar]
  28. Zawadzka, A. M., Vandecasteele, F. P. J., Crawford, R. L. & Paszczynski, A. J.(2006). Identification of siderophores of Pseudomonas stutzeri. Can J Microbiol 52, 1164–1176.[CrossRef] [Google Scholar]
  29. Ziemke, F., Höfle, M. G., Lalucat, J. & Rosselló-Mora, R.(1998). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48, 179–186.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65797-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65797-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2309 - 2315

Designations of the strains used in this study

PCR primers used in this study

GenBank accession numbers of the sequences used in this study

Consensus similarity indices between genomovars of and the closest related species

[PDF file of Supplementary Tables](114 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error