1887

Abstract

Three strains of xylanase-producing bacteria, S5-3, X13-1 and MXC2-2, isolated from soils in Thailand, were characterized taxonomically based on their phenotypic and chemotaxonomic characteristics and 16S rRNA gene sequence comparisons. They were Gram-positive, facultatively anaerobic, spore-forming, rod-shaped bacteria. They contained -diaminopimelic acid in the cell-wall peptidoglycan. The DNA G+C contents were respectively 45.8, 47.3 and 48.8 mol%. The predominant isoprenoid quinone was MK-7, and anteiso-C and C were the dominant cellular fatty acids. Phylogenetic analyses based on 16S rRNA gene sequence comparison showed that they were affiliated to the genus . Strains S5-3, X13-1 and MXC2-2 were closely related to A30 and DSM 1355 (94.7–98.6 % 16S rRNA gene sequence similarity). The similarity between the three novel strains ranged from 96.3 to 98.4 %. DNA–DNA relatedness, DNA G+C contents and some phenotypic characteristics could clearly distinguish the strains from each other and from related species. Therefore, strains S5-3, X13-1 and MXC2-2 represent novel species of the genus , for which the names sp. nov. (type strain S5-3 =KCTC 13038 =PCU 279 =TISTR 1831), sp. nov. (type strain X13-1 =KCTC 13039 =PCU 280 =TISTR 1830) and sp. nov. (type strain MXC2-2 =KCTC 13036 =PCU 281 =TISTR 1836) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65851-0
2009-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/1/130.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65851-0&mimeType=html&fmt=ahah

References

  1. Ash, C., Priest, F. G. & Collins, M. D.(1993). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 64, 253–260. [Google Scholar]
  2. Ash, C., Priest, F. G. & Collins, M. D.(1994).Paenibacillus gen. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 51. Int J Syst Bacteriol 44, 852–853.[CrossRef] [Google Scholar]
  3. Aÿ, J., Goetz, F., Borriss, R. & Heinemann, U.(1998). Structure and function of the Bacillus hybrid enzyme GluXyn-1: native-like jellyroll fold preserved after insertion of autonomous globular domain. Proc Natl Acad Sci U S A 95, 6613–6618.[CrossRef] [Google Scholar]
  4. Barrow, G. I. & Feltham, R. K. A.(1993).Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press.
  5. Euzéby, J. P.(2008).List of Prokaryotic Names with Standing in Nomenclature. Last full update 2 May 2008. http://www.bacterio.cict.fr/index.html
  6. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  7. Hespell, R. B.(1996). Fermentation of xylan, corn fiber, or sugars to acetoin and butanediol by Bacillus polymyxa strains. Curr Microbiol 32, 291–296.[CrossRef] [Google Scholar]
  8. Komagata, K. & Suzuki, K.(1987). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207. [Google Scholar]
  9. Lee, H. J., Shin, D. J., Cho, N. C., Kim, H. O., Shin, S. Y., Im, S. Y., Lee, H. B., Chum, S. B. & Bai, S.(2000). Cloning, expression and nucleotide sequences of two xylanase genes from Paenibacillus sp. Biotechnol Lett 22, 387–392.[CrossRef] [Google Scholar]
  10. Morales, P., Madarro, A., Flors, A., Sendra, J. M. & Pérez-González, J. A.(1995). Purification and characterization of a xylanase and an arabinofuranosidase from Bacillus polymyxa. Enzyme Microb Technol 17, 424–429.[CrossRef] [Google Scholar]
  11. Nielsen, P. & Sorensen, J.(1997). Multi-target and medium in dependent fungal antagonisms by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol Ecol 22, 183–192.[CrossRef] [Google Scholar]
  12. Park, M. J., Kim, H. B., An, D. S., Yang, H. C., Oh, S. T., Chung, H. J. & Yang, D. C.(2007).Paenibacillus soli sp. nov., a xylanolytic bacterium isolated from soil. Int J Syst Evol Microbiol 57, 146–150.[CrossRef] [Google Scholar]
  13. Rivas, R., Mateos, P. F., Martínez-Molina, E. & Velázquez, E.(2005a).Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. Int J Syst Evol Microbiol 55, 405–408.[CrossRef] [Google Scholar]
  14. Rivas, R., Mateos, P. F., Martínez-Molina, E. & Velázquez, E.(2005b).Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol 55, 743–746.[CrossRef] [Google Scholar]
  15. Rivas, R., García-Fraile, P., Mateos, P. F., Martínez-Molina, E. & Velázquez, E.(2006).Paenibacillus cellulosilyticus sp. nov., a cellulolytic and xylanolytic bacterium isolated from the bract phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol 56, 2777–2781.[CrossRef] [Google Scholar]
  16. Saito, H. & Miura, K.(1963). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72, 619–629.[CrossRef] [Google Scholar]
  17. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  18. Sánchez, M. M., Fritze, D., Blanco, A., Spröer, C., Tindall, B. J., Schumann, P., Kroppenstedt, R. M., Diaz, P. & Pastor, F. I. J.(2005).Paenibacillus barcinonensis sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro River delta. Int J Syst Evol Microbiol 55, 935–939.[CrossRef] [Google Scholar]
  19. Shida, O., Takagi, H., Kadowaki, K., Nakamura, L. K. & Komagata, K.(1997). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47, 289–298.[CrossRef] [Google Scholar]
  20. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  21. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega 4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef] [Google Scholar]
  22. Tanasupawat, S., Thawai, C., Yukphan, P., Moonmangmee, D., Itoh, T., Adachi, O. & Yamada, Y.(2004).Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the α-proteobacteria. J Gen Appl Microbiol 50, 159–167.[CrossRef] [Google Scholar]
  23. Teather, R. M. & Wood, P. J.(1982). Use of Congo red polysaccharide interaction in enumeration of cellulolytic bacteria from bovine rumen. Appl Environ Microbiol 43, 777–780. [Google Scholar]
  24. Ten, L. N., Baek, S. H., Im, W. T., Lee, M., Oh, H. W. & Lee, S. T.(2006).Paenibacillus panacisoli sp. nov., a xylanolytic bacterium isolated from soil in a ginseng field in South Korea. Int J Syst Evol Microbiol 56, 2677–2681.[CrossRef] [Google Scholar]
  25. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  26. Uetanabaro, A. P., Wahrenburg, C., Hunger, W., Pukall, R., Spröer, C., Stackebrandt, E., de Canhos, V. P., Claus, D. & Fritze, D.(2003).Paenibacillus agarexedens sp. nov., nom. rev., and Paenibacillus agaridevorans sp. nov. Int J Syst Evol Microbiol 53, 1051–1057.[CrossRef] [Google Scholar]
  27. Van der Maarel, M. J. E. C., Veen, A. & Wijbenga, D. J.(2000).Paenibacillus granivorans sp. nov., a new Paenibacillus species which degrades native potato starch granules. Syst Appl Microbiol 23, 344–348.[CrossRef] [Google Scholar]
  28. Velázquez, E., de Miguel, T., Poza, M., Rivas, R., Rosselló-Mora, R. & Villa, T. G.(2004).Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces. Int J Syst Evol Microbiol 54, 59–64.[CrossRef] [Google Scholar]
  29. Yoon, J. H., Kang, S. J., Yeo, S. H. & Oh, T. K.(2005).Paenibacillus alkaliterrae sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol 55, 2339–2344.[CrossRef] [Google Scholar]
  30. Zamost, B. L., Nielson, H. K. & Starnes, R. L.(1991). Thermostable enzymes for industrial applications. J Ind Microbiol 8, 71–82.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65851-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65851-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 130 - 134

Neighbour-joining (S1) and maximum-parsimony (S2) trees of 16S rRNA gene sequences showing the phylogenetic relationships between strains S5-3 , X13-1 and MXC2-2 and all species. [PDF](61 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error