1887

Abstract

An aerobic, chemoheterotrophic, non-motile, capsule-forming bacterium designated DHOF10 was isolated from a soil sample collected from the forest of Dinghushan Biosphere Reserve, Guangdong Province, PR China. Strain DHOF10 was able to grow at pH 3.5–8.0 (optimum pH 4.0–4.5) and at 10–37 °C (optimum 28–37 °C). NaCl tolerance was up to 1.0 % (w/v). Major fatty acids consisted of iso-C, Cω9 and Cω7. The quinone was MK-8 and the DNA G+C content was 56.3 mol%. The polar lipids consisted of phosphatidylethanolamine, an unidentified aminolipid, an unidentified phospholipid, two unidentified aminophospholipids and two unidentified polar lipids. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was a member of genus of the phylum , with the highest 16S rRNA gene sequence similarity of 97.3 % to AP8. On the basis of phylogenetic, phenotypic, physiological and chemotaxonomic distinctiveness, strain DHOF10 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is DHOF10 ( = CGMCC 1.13007 = KCTC 42631).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000676
2016-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/76.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000676&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  2. Barns S. M., Cain E. C., Sommerville L., Kuske C. R. 2007; Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol 73:3113–3116 [View Article][PubMed]
    [Google Scholar]
  3. Campbell B. J., Polson S. W., Hanson T. E., Mack M. C., Schuur E. A. 2010; The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ Microbiol 12:1842–1854 [View Article][PubMed]
    [Google Scholar]
  4. Collins M. D. 1985; Analysis of isoprenoid quinones. Methods Microbiol 18:329–366 [View Article]
    [Google Scholar]
  5. Eichorst S. A., Breznak J. A., Schmidt T. M. 2007; Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria . Appl Environ Microbiol 73:2708–2717 [View Article][PubMed]
    [Google Scholar]
  6. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. 1981 Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Hiraishi A., Kitamura H. 1984; Distribution of phototrophic purple nonsulfur bacteria in activated sludge systems and other aquatic environments. Bull Jpn Soc Sci Fish 50:1929–1937 [View Article]
    [Google Scholar]
  8. Hiraishi A., Nagashima K. V., Matsuura K., Shimada K., Takaichi S., Wakao N., Katayama Y. 1998; Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov. Int J Syst Bacteriol 48:1389–1398 [View Article][PubMed]
    [Google Scholar]
  9. Huang Z. F., Fan Z. G. 1982; The climate of Dinghushan. Tropical and Subtropical Forest Ecosystem 1:11–23
    [Google Scholar]
  10. Janssen P. H. 2006; Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728 [View Article][PubMed]
    [Google Scholar]
  11. Jones R. T., Robeson M. S., Lauber C. L., Hamady M., Knight R., Fierer N. 2009; A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453 [View Article][PubMed]
    [Google Scholar]
  12. Kishimoto N., Kosako Y., Tano T. 1991; Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr Microbiol 22:1–7 [View Article]
    [Google Scholar]
  13. Koch I. H., Gich F., Dunfield P. F., Overmann J. 2008; Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. Int J Syst Evol Microbiol 58:1114–1122 [View Article][PubMed]
    [Google Scholar]
  14. Kulichevskaya I. S., Kostina L. A., Valásková V., Rijpstra W. I., Sinninghe Damsté J. S., de Boer W., Dedysh S. N. 2012; Acidicapsa borealis gen. nov., sp. nov. and Acidicapsa ligni sp. nov., subdivision 1 Acidobacteria from Sphagnum peat and decaying wood. Int J Syst Evol Microbiol 62:1512–1520 [View Article][PubMed]
    [Google Scholar]
  15. Lane D. J. 1991 Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley;
    [Google Scholar]
  16. Liu C., Zuo W., Zhao Z., Qiu L. 2012; [Bacterial diversity of different successional stage forest soils in Dinghushan]. Wei Sheng Wu Xue Bao 52:1489–1496 (In Chinese) [PubMed]
    [Google Scholar]
  17. Männistö M. K., Tiirola M., Häggblom M. M. 2007; Bacterial communities in Arctic fjelds of Finnish Lapland are stable but highly pH-dependent. FEMS Microbiol Ecol 59:452–465 [View Article][PubMed]
    [Google Scholar]
  18. Männistö M. K., Rawat S., Starovoytov V., Häggblom M. M. 2011; Terriglobus saanensis sp. nov., an acidobacterium isolated from tundra soil. Int J Syst Evol Microbiol 61:1823–1828 [View Article][PubMed]
    [Google Scholar]
  19. Meier-Kolthoff J. P., Göker M., Spröer C., Klenk H. P. 2013; When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 195:413–418 [View Article][PubMed]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  21. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  22. Mo J., Brown S., Peng S., Kong G. 2003; Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China. For Eco Manage 175:573–583 [CrossRef]
    [Google Scholar]
  23. Okamura K., Kawai A., Yamada T., Hiraishi A. 2011; Acidipila rosea gen. nov., sp. nov., an acidophilic chemoorganotrophic bacterium belonging to the phylum Acidobacteria . FEMS Microbiol Lett 317:138–142 [View Article][PubMed]
    [Google Scholar]
  24. Pankratov T. A., Dedysh S. N. 2010; Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. Int J Syst Evol Microbiol 60:2951–2959 [View Article][PubMed]
    [Google Scholar]
  25. Pankratov T. A., Serkebaeva Y. M., Kulichevskaya I. S., Liesack W., Dedysh S. N. 2008; Substrate-induced growth and isolation of Acidobacteria from acidic Sphagnum peat. ISME J 2:551–560 [View Article][PubMed]
    [Google Scholar]
  26. Pankratov T. A., Kirsanova L. A., Kaparullina E. N., Kevbrin V. V., Dedysh S. N. 2012; Telmatobacter bradus gen. nov., sp. nov., a cellulolytic facultative anaerobe from subdivision 1 of the Acidobacteria, and emended description of Acidobacterium capsulatum Kishimoto et al. 1991. Int J Syst Evol Microbiol 62:430–437 [View Article][PubMed]
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16
    [Google Scholar]
  29. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. 1983; Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36 [View Article]
    [Google Scholar]
  30. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000676
Loading
/content/journal/ijsem/10.1099/ijsem.0.000676
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error