1887

Abstract

A novel, orange-pigmented, halophilic archaeon, strain DC8, was isolated from Urmia salt lake in north-west Iran. The cells of strain DC8 were non-motile and pleomorphic, from small rods to triangular or disc shaped. The novel strain needed at least 2.5 M NaCl and 0.02 M MgCl for growth. Optimal growth was achieved at 4.0 M NaCl and 0.1 M MgCl. The optimum pH and temperature for growth were pH 7.5 and 45 °C, respectively, and it was able to grow over a pH range of 7.0 to 8.5 and a temperature range of 25 to 55 °C. Analysis of the 16S rRNA gene sequence showed that strain DC8 was a member of the family ; however, its similarity was as low as 90.1 %, 89.3 % and 89.1 % to the most closely related haloarchaeal taxa, including type species of members of the genera , and , respectively. The G+C content of its DNA was 68.1 mol%. Polar lipid analyses revealed that strain DC8 contained phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and phosphatidic acid. One unknown phospholipid, two major glycolipids and one minor glycolipid were also detected. The only quinone present was MK-8 (II-H). The physiological, biochemical and phylogenetic differences between strain DC8 and other extremely halophilic archaeal genera with validly published names supported that this strain represents a novel species of a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain is strain DC8 ( = IBRC-M 10911 = CECT 8793).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000781
2016-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/725.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000781&mimeType=html&fmt=ahah

References

  1. Asem A., Mohebbi F., Ahmadi R. 2012; Drought in Urmia Lake, the largest natural habitat of brine shrimp Artemia . World Aquaculture 43:36–38
    [Google Scholar]
  2. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantiumin a pressureized atmosphere. Appl Environ Microbiol 32:781–791
    [Google Scholar]
  3. Bryant M. P. 1972; Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25:1324–1328
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  5. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [View Article][PubMed]
    [Google Scholar]
  6. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485
    [Google Scholar]
  7. Dyall-Smith M. 2009; The Halohandbook: Protocols for Haloarchaeal Genetics. http://www.haloarchaea.com/resources/halohandbook
    [Google Scholar]
  8. Echigo A., Minegishi H., Shimane Y., Kamekura M., Itoh T., Usami R. 2013; Halomicroarcula pellucida gen. nov., sp. nov., a non-pigmented, transparent-colony-forming, halophilic archaeon isolated from solar salt. Int J Syst Evol Microbiol 63:3556–3562 [View Article][PubMed]
    [Google Scholar]
  9. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  10. González C., Gutiérrez C., Ramirez C. 1978; Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715 [View Article][PubMed]
    [Google Scholar]
  11. Grant W. D., Kamekura M., McGenity T. J., Ventosa A. 2001; Order I. Halobacteriales . In Bergey's Manual of Systematic Bacteriology, 2nd edn. vol.1 The Archaea and Deeply Branching and Phototrophic Bacteria pp 294–334Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  12. Gutiérrez C., González C. 1972; Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 24:516–517
    [Google Scholar]
  13. Heidari N., Roudgar M., Ebrahimpour N. 2010; Thermodynamic quantities and Urmia Sea water evaporation. Saline Syst 6:3 [View Article][PubMed]
    [Google Scholar]
  14. Hezayen F. F., Rehm B. H. A, Tindall B. J., Steinbüchel A. 2001; Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). Int J Syst Evol Microbiol 51:1133–1142 [View Article][PubMed]
    [Google Scholar]
  15. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  16. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82:6955–6959 [View Article][PubMed]
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Evol Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  18. Minegishi H., Kamekura M., Itoh T., Echigo A., Usami R., Hashimoto T. 2010; Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B’ (rpoB’) gene. Int J Syst Evol Microbiol 60:2398–2408 [View Article][PubMed]
    [Google Scholar]
  19. Onishi H., Mori T., Takeuchi S., Tani K., Kobayashi T., Kamekura M. 1983; Halophilic nuclease of a moderately Halophilic Bacillus sp. Production, purification, and characterization. Appl Environ Microbiol 45:24–30
    [Google Scholar]
  20. Oren A., Gurevich P., Gemmell R. T., Teske A. 1995; Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 45:747–754 [View Article][PubMed]
    [Google Scholar]
  21. Oren A., Ventosa A., Grant W. D. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47:233–238 [View Article]
    [Google Scholar]
  22. Oren A., Elevi R., Watanabe S., Ihara K., Corcelli A. 2002; Halomicrobium mukohataei gen. nov., comb. nov., and emended description of Halomicrobium mukohataei . Int J Syst Evol Microbiol 52:1831–1835
    [Google Scholar]
  23. Papke R. T., White E., Reddy P., Weigel G., Kamekura M., Minegishi H., Usami R., Ventosa A. 2011; A multilocus sequence analysis approach to the phylogeny and taxonomy of the Halobacteriales . Int J Syst Evol Microbiol 61:2984–2995 [View Article][PubMed]
    [Google Scholar]
  24. Rzhetsky A., Nei M. 1992; A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  26. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp 607–654Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  29. Vreeland R. H., Straight S., Krammes J., Dougherty K., Rosenzweig W. D., Kamekura M. 2002; Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6:445–452 [View Article][PubMed]
    [Google Scholar]
  30. Wainø M., Tindall B. J., Ingvorsen K. 2000; Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. Int J Syst Evol Microbiol 50:183–190 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000781
Loading
/content/journal/ijsem/10.1099/ijsem.0.000781
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error