1887

Abstract

A thermophilic, anaerobic, chemolithoautotrophic bacterium (strain Sh68) was isolated from a hydrothermal pond at Uzon Caldera, Kamchatka, Russia, using anoxic medium with elemental sulfur as the only energy source. Cells of strain Sh68 were Gram-stain-negative rods, 0.5–0.8 μm in diameter and 1.2–2.0 μm in length, motile by means of flagella. The temperature range for growth was 30–65 °C, with an optimum at 50–52 °C. The pH range for growth was 5.2–7.5, with optimum growth at pH 6.0–6.2. Growth of strain Sh68 was observed at NaCl concentrations ranging from 0 to 2.3 % (w/v). Strain Sh68 grew anaerobically with elemental sulfur as an energy source and bicarbonate/CO as a carbon source. Elemental sulfur was disproportionated to sulfide and sulfate. Growth was enhanced in the presence of poorly crystalline Fe(III) oxide (ferrihydrite) as a sulfide-scavenging agent. Strain Sh68 was also able to grow by disproportionation of thiosulfate and sulfite. Sulfate was not used as an electron acceptor either with H or with organic electron donors. Analysis of the 16S rRNA gene sequence revealed that the isolate belongs to the class and is related most closely to S69 (90.0 % similarity). On the basis of its physiological properties and results of phylogenetic analyses, strain Sh68 is considered to represent a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is Sh68 ( = JCM 19990 = VKM B-2854). This is the first description of a sulfur-disproportionating thermophile from a terrestrial ecosystem.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000828
2016-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/1022.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000828&mimeType=html&fmt=ahah

References

  1. Bak F., Cypionka H. 1987; A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature 326:891–892 [View Article][PubMed]
    [Google Scholar]
  2. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F., Rapp B. A., Wheeler D. L. 1999; GenBank. Nucleic Acids Res 27:12–17 [View Article][PubMed]
    [Google Scholar]
  3. Finster K. 2008; Microbiological disproportionation of inorganic sulfur compounds. J Sulfur Chem 29:281–292 [View Article]
    [Google Scholar]
  4. Jackson B. E., McInerney M. J. 2000; Thiosulfate disproportionation by Desulfotomaculum thermobenzoicum . Appl Environ Microbiol 66:3650–3653 [View Article][PubMed]
    [Google Scholar]
  5. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  6. Philippot P., Van Zuilen M., Lepot K., Thomazo C., Farquhar J., Van Kranendonk M. J. 2007; Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science 317:1534–1537 [View Article][PubMed]
    [Google Scholar]
  7. Poser A., Lohmayer R., Vogt C., Knoeller K., Planer-Friedrich B., Sorokin D., Richnow H.-H., Finster K. 2013; Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes. Extremophiles 17:1003–1012 [View Article][PubMed]
    [Google Scholar]
  8. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  9. Slobodkin A. I., Tourova T. P., Kuznetsov B. B., Kostrikina N. A., Chernyh N. A., Bonch-Osmolovskaya E. A. 1999; Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. Int J Syst Bacteriol 49:1471–1478 [View Article][PubMed]
    [Google Scholar]
  10. Slobodkin A. I., Reysenbach A.-L., Slobodkina G. B., Baslerov R. V., Kostrikina N. A., Wagner I. D., Bonch-Osmolovskaya E. A. 2012; Thermosulfurimonas dismutans gen. nov., sp. nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 62:2565–2571 [View Article][PubMed]
    [Google Scholar]
  11. Slobodkin A. I., Reysenbach A.-L., Slobodkina G. B., Kolganova T. V., Kostrikina N. A., Bonch-Osmolovskaya E. A. 2013; Dissulfuribacter thermophilus gen. nov., sp. nov. a novel thermophilic autotrophic sulfur-disproportionating deeply branching deltaproteobacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 63:1967–1971 [View Article][PubMed]
    [Google Scholar]
  12. Slobodkina G. B., Panteleeva A. N., Kostrikina N. A., Kopitsyn D. S., Bonch-Osmolovskaya E. A., Slobodkin A. I. 2013; Tepidibacillus fermentans gen. nov., sp. nov., a moderately thermophilic anaerobic and microaerophilic bacterium from an underground gas storage. Extremophiles 17:833–839 [View Article][PubMed]
    [Google Scholar]
  13. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526[PubMed]
    [Google Scholar]
  14. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  15. Thamdrup B., Finster K., Hansen J. W., Bak F. 1993; Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol 59:101–108[PubMed]
    [Google Scholar]
  16. Wacey D., Kilburn M. R., Saunders M., Cliff J., Brasier M. D. 2011; Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat Geosci 4:698–702 [View Article]
    [Google Scholar]
  17. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886[PubMed]
    [Google Scholar]
  18. Zhilina T. N., Zavarzina D. G., Panteleeva A. N., Osipov G. A., Kostrikina N. A., Tourova T. P., Zavarzin G. A. 2012; Fuchsiella alkaliacetigena gen. nov., sp. nov., an alkaliphilic, lithoautotrophic homoacetogen from a soda lake. Int J Syst Evol Microbiol 62:1666–1673 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000828
Loading
/content/journal/ijsem/10.1099/ijsem.0.000828
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error