1887

Abstract

Strain DJ57 is a Gram-reaction-negative, filamentous-shaped, non-flagellated, aerobic bacterium isolated from farmland soil in Hunan province of China. 16S rRNA gene sequence analysis demonstrated that this isolate belonged to the genus with 95.83 % nucleotide identity to THYL-44, while the similarities to other type strains of species of the genus were less than 95.76 %. The major isoprenoid quinone was menaquinone-7 and the major fatty acids (>5 %) were iso-C, iso-C 3-OH, iso-C G, anteiso-C and iso-C. The DNA G+C content was 44 mol%. Polar lipids were phosphatidylethanolamine, three unknown aminophospholipids, three unknown phospholipids and six unknown lipids. The chemotaxonomic, phenotypic and genotypic data indicated that strain DJ57 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is DJ57 ( = KCTC 42474 = CCTCC AB 2015052).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000943
2016-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1768.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000943&mimeType=html&fmt=ahah

References

  1. Bernardet J. F., Nakagawa Y., Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070
    [Google Scholar]
  2. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868 [CrossRef]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  4. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  5. Dong X. Z., Cai M. Y. 2001 Determinative Manual for Routine Bacteriology Beijing: Scientific Press;
    [Google Scholar]
  6. Fan H., Su C., Wang Y., Yao J., Zhao K., Wang Y., Wang G. 2008; Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, northwestern China. J Appl Microbiol 105:529–539 [View Article][PubMed]
    [Google Scholar]
  7. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  9. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  11. Kim S. J., Ahn J. H., Weon H. Y., Hong S. B., Seok S. J., Kim J. S., Kwon S. W. 2015; Niastella gongjuensis sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 65:3115–3118 [View Article][PubMed]
    [Google Scholar]
  12. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  13. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series vol. 20) pp 173–199Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C conternt of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  15. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  16. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  17. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  18. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  19. Tindall B. J. 1990; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  20. Ventosa A., Marquez M. C., Kocur M., Tindall B. J. 1993; Comparative study of Micrococcus sp. strains CCM 168 and CCM 1405 and members of the genus Salinicoccus . Int J Syst Bacteriol 43:245–248 [View Article][PubMed]
    [Google Scholar]
  21. Weon H. Y., Kim B. Y., Yoo S. H., Lee S. Y., Kwon S. W., Go S. J., Stackebrandt E. 2006; Niastella koreensis gen. nov., sp. nov. and Niastella yeongjuensis sp. nov., novel members of the phylum Bacteroidetes, isolated from soil cultivated with Korean ginseng. Int J Syst Evol Microbiol 56:1777–1782 [View Article][PubMed]
    [Google Scholar]
  22. Xie C. H., Yokota A. 2003; Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349 [CrossRef]
    [Google Scholar]
  23. Zhang K., Wang Y., Tang Y., Dai J., Zhang L., An H., Luo G., Rahman E., Fang C. 2010; Niastella populi sp. nov., isolated from soil of Euphrates poplar (Populus euphratica) forest, and emended description of the genus Niastella . Int J Syst Evol Microbiol 60:542–545 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000943
Loading
/content/journal/ijsem/10.1099/ijsem.0.000943
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error