1887

Abstract

A Gram-stain-negative, aerobic, non-motile, non-spore-forming bacterium, strain 0511ARD5E5, was isolated from an air sample collected in Ardales Cave (Malaga, Spain). Strain 0511ARD5E5 grew at 4–37 °C and in the presence of 0–4 % (w/v) NaCl [optimally at 25 °C and with 1 % (w/v) NaCl]. Cells were catalase- and oxidase-positive. The major respiratory quinone was ubiquinone-10. The predominant fatty acids were C 7 and C. The DNA G+C content was 63.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 0511ARD5E5 was a member of the genus and was related most closely to DSM 8538 and CIP 108500(96.93 and 96.92 % similarity, respectively). Strain 0511ARD5E5 exhibited DNA–DNA relatedness of 47 % to DSM 8538 and 31 % to CIP 108500. Chemotaxonomic, phenotypic and phylogenetic analyses indicated that strain 0511ARD5E5 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 0511ARD5E5 (=LMG 27962=CECT 8482).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001018
2016-06-10
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2265.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001018&mimeType=html&fmt=ahah

References

  1. Davis D. H., Doudoroff M., Stanier R. Y., Mandel M. 1969; Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Bacteriol 19:375–390 [CrossRef]
    [Google Scholar]
  2. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376[PubMed] [CrossRef]
    [Google Scholar]
  3. Halebian S., Harris B., Finegold S. M., Rolfei R. D. 1981; Rapid method that aids in distiguishing Gram-positive from Gram-negative anaerobic bacteria. J Clin Microbiol 13:444–448[PubMed]
    [Google Scholar]
  4. Jung Y. T., Park S., Lee J. S., Yoon J. H. 2014; Paracoccus lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 64:2763–2769 [View Article][PubMed]
    [Google Scholar]
  5. Jurado V., Kroppenstedt R. M., Saiz-Jimenez C., Klenk H. P., Mouniée D., Laiz L., Couble A., Pötter G., Boiron P., Rodríguez-Nava V. 2009; Hoyosella altamirensis gen. nov., sp. nov., a new member of the order Actinomycetales isolated from a cave biofilm. Int J Syst Evol Microbiol 59:3105–3110 [View Article][PubMed]
    [Google Scholar]
  6. Katayama Y., Hiraishi A., Kuraishi H. 1995; Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology 141:1469–1477 [View Article][PubMed]
    [Google Scholar]
  7. Khan S. T., Takaichi S., Harayama S. 2008; Paracoccus marinus sp. nov., an adonixanthin diglucoside-producing bacterium isolated from coastal seawater in Tokyo Bay. Int J Syst Evol Microbiol 58:383–386 [View Article][PubMed]
    [Google Scholar]
  8. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  9. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  10. Laiz L., Miller A. Z., Jurado V., Akatova E., Sanchez-Moral S., Gonzalez J. M., Dionísio A., Macedo M. F., Saiz-Jimenez C. 2009; Isolation of five Rubrobacter strains from biodeteriorated monuments. Naturwissenschaften 96:71–79 [View Article][PubMed]
    [Google Scholar]
  11. Lee M. J., Lee S. S. 2013; Paracoccus limosus sp. nov., isolated from activated sludge in a sewage treatment plant. Int J Syst Evol Microbiol 63:1311–1316 [View Article][PubMed]
    [Google Scholar]
  12. Liu Z.-P., Wang B.-J., Liu X.-Y., Dai X., Liu Y.-H., Liu S.-J. 2008; Paracoccus halophilus sp. nov isolated from marine sediment of the South China Sea, China, and emended description of genus Paracoccus Davis 1969. Int J Syst Evol Microbiol 58:257–261 [CrossRef]
    [Google Scholar]
  13. Ludwig W., Mittenhuber G., Friedrich C. G. 1993; Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. Int J Syst Bacteriol 43:363–367 [View Article][PubMed]
    [Google Scholar]
  14. Lányi B. 1987; Classical and rapid identification methods for medically important bacteria. In Methods in Microbiology vol. 19 , pp. 1–67 Edited by Colwell R. R., Grigorova R. London: Academic Press;
    [Google Scholar]
  15. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  17. Tambalo D. D., Del Bel K. L., Bustard D. E., Greenwood P. R., Steedman A. E., Hynes M. F. 2010; Regulation of flagellar, motility and chemotaxis genes in Rhizobium leguminosarum by the VisN/R-Rem cascade. Microbiology 156:1673–1685 [View Article][PubMed]
    [Google Scholar]
  18. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  19. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882[PubMed] [CrossRef]
    [Google Scholar]
  20. Urakami T., Araki H., Oyanagi H., Suzuki K.-I., Komagata K. 1990; Paracoccus aminophilussp. nov. and Paracoccus aminovorans sp. nov., which utilize N,N-dimethylformamide. Int J Syst Bacteriol 40:287–291 [View Article][PubMed]
    [Google Scholar]
  21. Urakami T., Tamaoka J., Suzuki K.-I., Komagata K. 1989; Paracoccus alcaliphilus sp. nov., an alkaliphilic and facultatively methylotrophic bacterium. Int J Syst Bacteriol 39:116–121 [CrossRef]
    [Google Scholar]
  22. Urdiain M., López-López A., Gonzalo C., Busse H. J., Langer S., Kämpfer P., Hans-Jürgen B. 2008; Reclassification of Rhodobium marinum and Rhodobium pfennigii as Afifella marina gen. nov. comb. nov. and Afifella pfennigii comb. nov., a new genus of photoheterotrophic Alphaproteobacteria and emended descriptions of Rhodobium, Rhodobium orientis and Rhodobium gokarnense . Syst Appl Microbiol 31:339–351 [View Article][PubMed]
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001018
Loading
/content/journal/ijsem/10.1099/ijsem.0.001018
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error