1887

Abstract

A Gram-stain-negative, strictly aerobic, non-motile, non-gliding, oxidase-positive, catalase-positive, rod-shaped bacterium, designated strain sw153, was isolated from surface seawater of the South Pacific Gyre (39° 19′ S 139° 48′ W) during Integrated Ocean Drilling Program Expedition 329. Growth occurred at 10–42 °C (optimum 28 °C), in the presence of 1–8 % (w/v) NaCl (optimum 2 %) and at pH 6.0–10.0 (optimum pH 7.5–8.5). The major fatty acids (>10 %) were iso-C and summed feature 3 (C 6 and/or C 7). The major polar lipids comprised phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine, phosphatidylglycerol, an unidentified polar lipid and an unidentified phospholipid. The major respiratory quinone was ubiquinone-8 (Q-8). The DNA G+C content of strain sw153 was 44.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences placed strain sw153 within the genus , class . The most closely related species was KMM 3900(96.6 % 16S rRNA gene sequence similarity). Based on the polyphasic analyses in this study, strain sw153 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is sw153 (=JCM 18208=CGMCC 1.12181).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001027
2016-06-10
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2313.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001027&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. . (editors) (1995 Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology, 3rd edn. New York: Wiley;
    [Google Scholar]
  2. Bernardet J. F., Nakagawa Y., Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  3. Beveridge T. J., Lawrence J. R., Murray R. G. E. 2007; Sampling and staining for light microscopy. In Methods for General and Molecular Microbiology, 3rd edn. pp. 19–33 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Garrity G. M., Bell J. A., Lilburn T. 2005; Phylum XIV. Proteobacteria phyl. nov. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 2 (The Proteobacteria), Part B (The Gammaproteobacteria), pp. 1 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer; [CrossRef]
    [Google Scholar]
  5. González J. M., Mayer F., Moran M. A., Hodson R. E., Whitman W. B. 1997; Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 47:369–376 [View Article][PubMed]
    [Google Scholar]
  6. Hsu S. C., Lockwood J. L. 1975; Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 29:422–426[PubMed]
    [Google Scholar]
  7. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  8. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120[PubMed] [CrossRef]
    [Google Scholar]
  9. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [CrossRef]
    [Google Scholar]
  10. Lyman J., Fleming R. H. 1940; Composition of seawater. J Marine Res 3:134–146
    [Google Scholar]
  11. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by highperformance liquid hromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  12. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  13. Montero-Calasanz M. C., Göker M., Rohde M., Spröer C., Schumann P., Busse H. J., Schmid M., Tindall B. J., Klenk H. P., Camacho M. 2013; Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium . Int J Syst Evol Microbiol 63:4386–4395 [View Article][PubMed]
    [Google Scholar]
  14. Moore E. R. B., Arnscheidt A., Kruger A., Strömpl C., Mau M. 1999; Simplified protocols for the preparation of genomic DNA from bacterial cultures. In Molecular Microbial Ecology Manual pp. 1.6.1.1–1.6.1.15 Edited by Akkermans A. D. L., van Elsas J. D., de Bruijn F. J. Dordrecht: Kluwer;
    [Google Scholar]
  15. Romanenko L. A., Schumann P., Rohde M., Mikhailov V. V., Stackebrandt E. 2004; Reinekea marinisedimentorum gen. nov., sp. nov., a novel gammaproteobacterium from marine coastal sediments. Int J Syst Evol Microbiol 54:669–673 [View Article][PubMed]
    [Google Scholar]
  16. Romanenko L. A., Tanaka N., Frolova G. M., Mikhailov V. V. 2010; Marinicella litoralis gen. nov., sp. nov., a gammaproteobacterium isolated from coastal seawater. Int J Syst Evol Microbiol 60:1613–1619 [View Article][PubMed]
    [Google Scholar]
  17. Sasser M. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  18. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  19. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  20. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd edn, pp..330–393 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Xie C. H., Yokota A. 2003; Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349[PubMed] [CrossRef]
    [Google Scholar]
  22. Zhang Z., Yu T., Xu T., Zhang X. H. 2014; Aquimarina pacifica sp. nov., isolated from seawater. Int J Syst Evol Microbiol 64:1991–1997 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001027
Loading
/content/journal/ijsem/10.1099/ijsem.0.001027
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error