1887

Abstract

In the context of studying the bacterial community involved in nitrogen transformation processes in arable soils exposed to different extents of erosion and sedimentation in a long-term experiment (CarboZALF), a strain was isolated that reduced nitrate to nitrous oxide without formation of molecular nitrogen. The presence of the functional gene , encoding the respiratory copper-containing nitrite reductase, and the absence of the nitrous oxide reductase gene indicated a truncated denitrification pathway and that this bacterium may contribute significantly to the formation of the important greenhouse gas NO. Phylogenetic analysis based on the 16S rRNA gene sequence and the housekeeping genes and demonstrated that the investigated soil isolate belongs to the genus . The closest phylogenetic neighbours were the type strains of and . The close relationship with was reflected by similarity analysis of the and genes and their amino acid positions. DNA–DNA hybridization studies revealed genetic differences at the species level, which were substantiated by analysis of the whole-cell fatty acid profile and several distinct physiological characteristics. Based on these results, it was concluded that the soil isolate represents a novel species of the genus , for which the name sp. nov. (type strain Po 20/26=DSM 100211=LMG 28788) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001036
2016-06-10
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2354.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001036&mimeType=html&fmt=ahah

References

  1. An D. S., Im W. T., Yang H. C., Lee S. T. 2006; Shinella granuli gen. nov., sp. nov., and proposal of thereclassification of Zoogloea ramigera ATCC 19623 as Shinella zoogloeoides sp. nov. Int J Syst Evol Microbiol 56:443–448 [View Article][PubMed]
    [Google Scholar]
  2. Balkwill D. L. 2005; Ensifer. In Bergey's Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Ltd;
    [Google Scholar]
  3. Behrendt U., Augustin J., Spröer C., Gelbrecht J., Schumann P., Ulrich A. 2015; Taxonomic characterisation of Proteus terrae sp. nov., a N2O-producing, nitrate-ammonifying soil bacterium. Antonie Van Leeuwenhoek 108:1457–1468 [View Article][PubMed]
    [Google Scholar]
  4. Behrendt U., Schumann P., Stieglmeier M., Pukall R., Augustin J., Sproer C., Schwendner P., Moissl-Eichinger C., Ulrich A. 2010; Characterization of heterotrophic nitrifying bacteria with respiratory ammonification and denitrification activity – description of Paenibacillus uliginis sp. nov., an inhabitant of fen peat soil and Paenibacillus purispatii sp. nov., isolated from a spacecraft assembly clean room. Syst Appl Microbiol 33:328–336 [CrossRef]
    [Google Scholar]
  5. Behrendt U., Ulrich A., Schumann P. 2003; Fluorescent pseudomonads associated with the phyllosphere of grasses; Pseudomonas trivialis sp. nov., Pseudomonas poae sp. nov. and Pseudomonas congelans sp. nov. Int J Syst Evol Microbiol 53:1461–1469 [CrossRef]
    [Google Scholar]
  6. Behrendt U., Ulrich A., Schumann P., Erler W., Burghardt J., Seyfarth W. 1999; A taxonomic study of bacteria isolated from grasses: a proposed new species Pseudomonas graminis sp. nov. Int J Syst Bacteriol 49:297–308 [CrossRef]
    [Google Scholar]
  7. Bibi F., Chung E. J., Khan A., Jeon C. O., Chung Y. R. 2012; Rhizobium halophytocola sp. nov., isolated from the root of a coastal dune plant. Int J Syst Evol Microbiol 62:1997–2003 [CrossRef]
    [Google Scholar]
  8. Braker G., Fesefeldt A., Witzel K. P. 1998; Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol 64:3769–3775
    [Google Scholar]
  9. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef]
    [Google Scholar]
  10. Dall'Agnol R. F., Ribeiro R. A., Delamuta J. R., Ormeño-Orrillo E., Rogel M. A., Andrade D. S., Martínez-Romero E., Hungria M. 2014; Rhizobium paranaense sp. nov., an effective N2-fixing symbiont of common bean (Phaseolus vulgaris L.) with broad geographical distribution in Brazil. Int J Syst Evol Microbiol 64:3222–3229 [View Article][PubMed]
    [Google Scholar]
  11. Dall'Agnol R. F., Ribeiro R. A., Ormeño-Orrillo E., Rogel M. A., Delamuta J. R. M., Andrade D. S., Martínez-Romero E., Hungria M. 2013; Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. Int J Syst Evol Microbiol 63:4167–4173 [CrossRef]
    [Google Scholar]
  12. Farrand S. K., van Berkum P. B., Oger P. 2003; Agrobacterium is a definable genus of the family Rhizobiaceae. Int J Syst Evol Microbiol 53:1681–1687 [CrossRef]
    [Google Scholar]
  13. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  14. Glaeser S. P., Falsen E., Martin K., Kämpfer P. 2013; Alicyclobacillus consociatus sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol 63:3623–3627 [View Article][PubMed]
    [Google Scholar]
  15. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773[PubMed] [CrossRef]
    [Google Scholar]
  16. Han T., Wang E. T., Wu L. J., Chen W. F., Gu J. G., Gu C. T., Tian C. F., Chen W. 2008; Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. Int J Syst Evol Microbiol 58:1693–1699 [CrossRef]
    [Google Scholar]
  17. Hayashi K., Tokida T., Kajiura M., Yanai Y., Yano M. 2015; Cropland soil–plant systems control production and consumption of methane and nitrous oxide and their emissions to the atmosphere. Soil Sci Plant Nutr 61:2–33 [CrossRef]
    [Google Scholar]
  18. Henry S., Bru D., Stres B., Hallet S., Philippot L. 2006; Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72:5181–5189 [CrossRef]
    [Google Scholar]
  19. Kuykendall L. D., Hashem F. M., Wang W. T. 2015a; Sinorhizobium.. In Bergey's Manual of Systematics of Archaea and Bacteria pp. 1–11 John Wiley & Sons, Ltd;
    [Google Scholar]
  20. Kuykendall L. D., Young J. M., Martínez-Romero E., Kerr A., Sawada H. 2015b; Rhizobium.. In Bergey's Manual of Systematics of Archaea and Bacteria pp. 1–36 John Wiley & Sons, Ltd;
    [Google Scholar]
  21. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  22. Lindström K., Young J. P. W. 2011; International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Agrobacterium and Rhizobium . Int J Syst Evol Microbiol 61:3089–3093 [CrossRef]
    [Google Scholar]
  23. Mousavi S. A., Willems A., Nesme X., de Lajudie P., Lindström K. 2015; Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 38:84–90 [View Article][PubMed]
    [Google Scholar]
  24. Mousavi S. A., Österman J., Wahlberg N., Nesme X., Lavire C., Vial L., Paulin L., de Lajudie P., Lindström K. 2014; Phylogeny of the Rhizobium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 37:208–215 [View Article][PubMed]
    [Google Scholar]
  25. O'Hara G. W., Daniel R. M. 1985; Rhizobial denitrification: A review. Soil Biol Biochem 17:1–9 [CrossRef]
    [Google Scholar]
  26. Olivares J., Bedmar E. J., Sanjuán J. 2013; Biological nitrogen fixation in the context of global change. Mol Plant-Microbe Interact 26:486–494 [CrossRef]
    [Google Scholar]
  27. Ormeno-Orrillo E., Servin-Garciduenas L. E., Rogel M. A., Gonzalez, V, Peralta H., Mora J., Martinez-Romero J., Martinez-Romero E. 2015; Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol 38:287–291 [CrossRef]
    [Google Scholar]
  28. Parag B., Sasikala C., Ramana C. V 2013; Molecular and culture dependent characterization of endolithic bacteria in two beach sand samples and description of Rhizobium endolithicum sp. nov. Antonie Van Leeuwenhoek 104:1235–1244 [CrossRef]
    [Google Scholar]
  29. Ramana C., Parag B., Girija K. R., Ram B. R., Ramana V., Sasikala C. 2013; Rhizobium subbaraonis sp. nov., an endolithic bacterium isolated from beach sand. Int J Syst Evol Microbiol 63:581–585 [CrossRef]
    [Google Scholar]
  30. Rincón-Rosales R., Villalobos-Escobedo J. M., Rogel M. A., Martinez J., Ormeño-Orrillo E., Martínez-Romero E. 2013; Rhizobium calliandrae sp. nov., Rhizobium mayense sp. nov. and Rhizobium jaguaris sp. nov., rhizobial species nodulating the medicinal legume Calliandra grandiflora . Int J Syst Evol Microbiol 63:3423–3429 [CrossRef]
    [Google Scholar]
  31. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  32. Shapleigh J. P. 2006; The denitrifying prokaryotes. In The Prokaryotes; a Handbook on the Biology of Bacteria vol. 2 ,pp. 769–792 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. New York: Springer-Verlag;
    [Google Scholar]
  33. Sommer M., Augustin J., Kleber M. 2015; Feedbacks of soil erosion on SOC patterns and carbon dynamics in agricultural landscapes—The CarboZALF experiment. Soil Till Res 156:182–184 [CrossRef]
    [Google Scholar]
  34. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; MEGA6: Moleculare evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The Clustal _X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  36. Tian C. F., Wang E. T., Wu L. J., Han T., Chen W. F., Gu C. T., Gu J. G., Chen W. 2008; Rhizobium fabae sp. nov., a bacterium that nodulates Vicia faba . Int J Syst Evol Microbiol 58:2871–2875 [CrossRef]
    [Google Scholar]
  37. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D. 2000; Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801 [CrossRef]
    [Google Scholar]
  38. Uchida Y., Akiyama H. 2013; Mitigation of postharvest nitrous oxide emissions from soybean ecosystems: a review. Soil Sci Plant Nutr 59:477–487 [CrossRef]
    [Google Scholar]
  39. Urakami T., Segers P. 2015; Mycoplana. In Bergey's Manual of Systematics of Archaea and Bacteria pp. 1–7 John Wiley & Sons, Ltd;
    [Google Scholar]
  40. Vinuesa P., Silva C., Lorite M. J., Izaguirre-Mayoral M. L., Bedmar E. J., Martínez-Romero E. 2005; Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28:702–716 [CrossRef]
    [Google Scholar]
  41. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I, Moore L. H., Moore W. E. C., Murray R. G. E., other authors. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  42. Willems A. 2006; The taxonomy of rhizobia: an overview. Plant Soil 287:3–14 [CrossRef]
    [Google Scholar]
  43. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L.-H., Jiang C. L. 2005; Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 55:1149–1153 [CrossRef]
    [Google Scholar]
  44. Young J. M. 2004; Renaming of Agrobacterium larrymoorei Bouzar and Jones 2001 as Rhizobium larrymoorei (Bouzar and Jones 2001) comb. nov. Int J Syst Evol Microbiol 54:149 [View Article][PubMed]
    [Google Scholar]
  45. Young J. M., Kerr A., Sawada H. 2015; Agrobacterium.. In Bergey's Manual of Systematics of Archaea and Bacteria pp. 1–15 John Wiley & Sons, Ltd;
    [Google Scholar]
  46. Young J. M., Kuykendall L. D., Martínez-Romero E., Kerr A., Sawada H. 2001; A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie, et al. 1998 as new combinations: Rhizobium radiobacter. R. rhizogenes, R. rubi, R. undicola and R. vitis . Int J Syst Evol Microbiol 51:89–103 [CrossRef]
    [Google Scholar]
  47. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Evol Microbiol 48:179–186
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001036
Loading
/content/journal/ijsem/10.1099/ijsem.0.001036
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error