1887

Abstract

A coccus-shaped, non-spore-forming actinobacterium, designated strain 4Q3S-3, was isolated from surface-sterilized bark of the mangrove plant collected from Cotai Ecological Zones in Macao, China, and tested by a polyphasic approach to clarify its taxonomic position. This actinobacterium was Gram-stain-positive and aerobic. Neither substrate nor aerial mycelia were formed, and no diffusible pigments were observed on the media tested. Strain 4Q3S-3 grew optimally without NaCl at 28–30 °C, pH 7.0–8.0. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain 4Q3S-3 belonged to the genus and shared the highest 16S rRNA gene sequence similarity with W6 (96.57 %). The DNA G+C content of strain 4Q3S-3 was 69.5 mol%. The cell-wall peptidoglycan contained -2,6-diaminopimelic acid, and MK-9(H) was the predominant menaquinone. The polar lipids comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, unidentified glycolipid, amino lipids and two unidentified phospholipids. The predominant fatty acids were anteiso-C, iso-C and iso-C. Based on phylogenetic, phenotypic and chemotaxonomic data, strain 4Q3S-3 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 4Q3S-3 (=DSM 100723=CGMCC 4.7307).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001146
2016-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3057.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001146&mimeType=html&fmt=ahah

References

  1. An D. S., Im W. T., Yoon M. H. 2008; Microlunatus panaciterrae sp. nov., a beta-glucosidase-producing bacterium isolated from soil in a ginseng field. Int J Syst Evol Microbiol 58:2734–2738 [View Article][PubMed]
    [Google Scholar]
  2. Cappuccino J. G., Sherman N. 2002 Microbiology: A Laboratory Manual, 6th edn. San Francisco: Benjamin Cummings Pearson Education;
    [Google Scholar]
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [View Article][PubMed]
    [Google Scholar]
  4. Euzéby J. P. 1997; List of bacterial names with standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47:590–592 [View Article][PubMed]
    [Google Scholar]
  5. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376[PubMed] [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on Phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  7. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  8. Gonzalez C., Gutierrez C., Ramirez C. 1978; Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715[PubMed] [CrossRef]
    [Google Scholar]
  9. Guo L., Tuo L., Habden X., Zhang Y., Liu J., Jiang Z., Liu S., Dilbar T., Sun C. 2015; Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 65:206–213 [View Article][PubMed]
    [Google Scholar]
  10. Iwai K., Aisaka K., Suzuki M. 2010; Friedmanniella luteola sp. nov., Friedmanniella lucida sp. nov., Friedmanniella okinawensis sp. nov. and Friedmaniella sagamiharensis sp. nov., isolated from spiders. Int J Syst Evol Microbiol 60:113–120 [View Article][PubMed]
    [Google Scholar]
  11. Kelly K. L. 1964 Inter-Society Color Council-National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office;
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  13. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120[PubMed] [CrossRef]
    [Google Scholar]
  14. Lawson P. A., Collins M. D., Schumann P., Tindall B. J., Hirsch P., Labrenz M. 2000; New LL-diaminopimelic acid-containing actinomycetes from hypersaline, heliothermal and meromictic Antarctic Ekho Lake: Nocardioides aquaticus sp. nov. and Friedmanniella [correction of Friedmannielly] lacustris sp. nov. Syst Appl Microbiol 23:219–229[PubMed] [CrossRef]
    [Google Scholar]
  15. Lee J. J., Kim M. K. 2012; Microlunatus terrae sp. nov., a bacterium isolated from soil. J Microbiol 50:547–552 [View Article][PubMed]
    [Google Scholar]
  16. Li W. J., Xu P., Schumann P., Zhang Y. Q., Pukall R., Xu L. H., Stackebrandt E., Jiang C. L. 2007; Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China) and emended description of the genus Georgenia . Int J Syst Evol Microbiol 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  17. Magee C. M., Rodeheaver G., Edgerton M. T., Edlich R. F. 1975; A more reliable gram staining technic for diagnosis of surgical infections. Am J Surg 130:341–346[PubMed] [CrossRef]
    [Google Scholar]
  18. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  19. Maszenan A. M., Seviour R. J., Patel B. K., Schumann P., Burghardt J., Webb R. I., Soddell J. A., Rees G. N. 1999; Friedmanniella spumicola sp. nov. and Friedmanniella capsulata sp. nov. from activated sludge foam: gram-positive cocci that grow in aggregates of repeating groups of cocci. Int J Syst Bacteriol 49:1667–1680 [View Article][PubMed]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  21. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  22. Qin S., Wang H. B., Chen H. H., Zhang Y. Q., Jiang C. L., Xu L. H., Li W. J. 2008; Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. Int J Syst Evol Microbiol 58:2525–2528 [View Article][PubMed]
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  24. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 Newark, DE: MIDI inc;
    [Google Scholar]
  25. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477[PubMed]
    [Google Scholar]
  26. Schumann P., Prauser H., Rainey F. A., Stackebrandt E., Hirsch P. 1997; Friedmanniella antarctica gen. nov., sp. nov., an LL-diaminopimelic acid-containing actinomycete from Antarctic sandstone. Int J Syst Bacteriol 47:278–283 [View Article][PubMed]
    [Google Scholar]
  27. Schumann P., Pukall R. 2012; Genus IV. Friedmanniella Schumann, Prauser, rainey, Stackebrandt and Hirsch 1997, 282VP. In Bergey’s Manual of Systematic Bacteriology , 2nd edn. vol. 5 pp 1159–1163 Edited by Whitman W. B., Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Suzuki K.-I., Ludwig W., Parte A. New York: Springer;
    [Google Scholar]
  28. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [CrossRef]
    [Google Scholar]
  29. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882[PubMed] [CrossRef]
    [Google Scholar]
  31. Tuo L., Dong Y. P., Habden X., Liu J. M., Guo L., Liu X. F., Chen L., Jiang Z. K., Liu S. W. et al. 2015; Nocardioides deserti sp. nov., an actinobacterium isolated from desert soil. Int J Syst Evol Microbiol 65:1604–1610 [View Article][PubMed]
    [Google Scholar]
  32. Waksman S. A. 1961; The Actinomycetes. Classification, Identification and Description of Genera and Species vol. 2 Baltimore: Williams & Wilkins;
    [Google Scholar]
  33. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L. 2005; Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  34. Zhang X., Zhang J., Zhang Y., Xin Y., He H. 2013; Friedmanniella flava sp. nov., a soil actinomycete. Int J Syst Evol Microbiol 63:1771–1775 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001146
Loading
/content/journal/ijsem/10.1099/ijsem.0.001146
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error