1887

Abstract

A novel aerotolerant anaerobic, moderately thermophilic, organotrophic bacterium, strain MBL-TLP, was isolated from a sample of microbial mat, developed under the flow of subsurface water in TauTona gold mine, South Africa. Cells of the new isolate were flagellated, spore-forming rods, 0.25–0.5 µm in width and 3–15 µm in length. Strain MBL-TLP grew in the temperature range from 25 to 58 °C, pH range from 5.6 to 8.8 and at NaCl concentration from 0 to 85 g l. The isolate was able to ferment yeast extract and mono-, oligo- and polysaccharides, including starch and xanthan gum. The G+C content of the DNA was 35 mol%. Phylogenetic analysis of 16S rRNA gene sequences of strain MBL-TLP and relatives showed its affiliation to the genus . STGH was its closest relative (97.1 % identity of 16S rRNA gene sequences). Based on phylogenetic analysis and the physiological properties of the novel isolate, we propose a novel species, sp. nov., with MBL-TLP(=DSM 28123=VKM В-2949) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001166
2016-08-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3189.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001166&mimeType=html&fmt=ahah

References

  1. Blanco Y., Rivas L. A., García-Moyano A., Aguirre J., Cruz-Gil P., Palacín A., van Heerden E., Parro V. 2014; Deciphering the prokaryotic community and metabolisms in South African deep-mine biofilms through antibody microarrays and graph theory. PLoS One 9:e114180 [View Article][PubMed]
    [Google Scholar]
  2. Bonch-Osmolovskaya E. A., Sokolova T. G., Kostrikina N. A., Zavarzin G. A. 1990; Desulfurella acetivorans gen. nov. and sp. nov. –a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153:151–155 [View Article]
    [Google Scholar]
  3. Colwell F. S., D'Hondt S. 2013; Nature and extent of the deep biosphere. Rev Mineral Geochem 75:547–574 [View Article]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  5. Gihring T. M., Moser D. P., Lin L. H., Davidson M., Onstott T. C., Morgan L., Milleson M., Kieft T. L., Trimarco E. et al. 2006; The distribution of microbial taxa in the subsurface water of the Kalahari Shield, South Africa. Geomicrobiol J 23:415–430 [View Article]
    [Google Scholar]
  6. Inagaki F., Takai K., Hirayama H., Yamato Y., Nealson K. H., Horikoshi K. 2003; Distribution and phylogenetic diversity of the subsurface microbial community in a Japanese epithermal gold mine. Extremophiles 7:307–317 [View Article][PubMed]
    [Google Scholar]
  7. Itävaara M., Nyyssönen M., Kapanen A., Nousiainen A., Ahonen L., Kukkonen I. 2011; Characterization of bacterial diversity to a depth of 1500 m in the Outokumpu deep borehole, Fennoscandian Shield. FEMS Microbiol Ecol 77:295–309 [View Article][PubMed]
    [Google Scholar]
  8. Kallmeyer J., Pockalny R., Adhikari R. R., Smith D. C., D'Hondt S. 2012; Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA 109:16213–16216 [View Article][PubMed]
    [Google Scholar]
  9. Katoh K., Misawa K., Kuma K., Miyata T. 2002; MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066 [View Article][PubMed]
    [Google Scholar]
  10. Kevbrin V. V., Zavarzin G. A. 1992; The effect of sulfur compounds on growth of halophilic homoacetic bacterium Acetohalobium arabaticum. Microbiology 61:563–567
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  12. Lippmann-Pipke J., Erzinger J., Zimmer M., Kujawa C., Boettcher M., Heerden E. V., Bester A., Moller H., Stroncik N. A. et al. 2011; Geogas transport in fractured hard rock – Correlations with mining seismicity at 3.54 km depth, TauTona gold mine, South Africa. Appl Geochem 26:2134–2146 [View Article]
    [Google Scholar]
  13. Magnabosco C., Tekere M., Lau M. C., Linage B., Kuloyo O., Erasmus M., Cason E., van Heerden E., Borgonie G. et al. 2014; Comparisons of the composition and biogeographic distribution of the bacterial communities occupying South African thermal springs with those inhabiting deep subsurface fracture water. Front Microbiol 5:679 [View Article][PubMed]
    [Google Scholar]
  14. Magnabosco C., Ryan K., Lau M. C., Kuloyo O., Sherwood Lollar B., Kieft T. L., van Heerden E., Onstott T. C. 2016; A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust. ISME J 10:730–741 [View Article][PubMed]
    [Google Scholar]
  15. Nei M., Kumar S. 2000 Molecular Evolution and Phylogenetics New York: Oxford University Press;
    [Google Scholar]
  16. Perevalova A. A., Kublanov I. V., Baslerov R. V., Zhang G., Bonch-Osmolovskaya E. A. 2013; Brockia lithotrophica gen. nov., sp. nov., an anaerobic thermophilic bacterium from a terrestrial hot spring. Int J Syst Evol Microbiol 63:479–483 [View Article][PubMed]
    [Google Scholar]
  17. Podosokorskaya O. A., Kublanov I. V., Reysenbach A. L., Kolganova T. V., Bonch-Osmolovskaya E. A. 2011; Thermosipho affectus sp. nov., a thermophilic, anaerobic, cellulolytic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 61:1160–1164 [View Article][PubMed]
    [Google Scholar]
  18. Podosokorskaya O. A., Bonch-Osmolovskaya E. A., Novikov A. A., Kolganova T. V., Kublanov I. V. 2013; Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae. Int J Syst Evol Microbiol 63:86–92 [View Article][PubMed]
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  20. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  21. Slobodkina G. B., Panteleeva A. N., Kostrikina N. A., Kopitsyn D. S., Bonch-Osmolovskaya E. A., Slobodkin A. I. 2013; Tepidibacillus fermentans gen. nov., sp. nov.: a moderately thermophilic anaerobic and microaerophilic bacterium from an underground gas storage. Extremophiles 17:833–839 [View Article][PubMed]
    [Google Scholar]
  22. Takai K., Moser D. P., DeFlaun M., Onstott T. C., Fredrickson J. K. 2001; Archaeal diversity in waters from deep South African gold mines. Appl Environ Microbiol 67:5750–5760 [View Article][PubMed]
    [Google Scholar]
  23. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526[PubMed]
    [Google Scholar]
  24. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  25. Tsai Y. L., Olson B. H. 1991; Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol 57:1070–1074[PubMed]
    [Google Scholar]
  26. Whitman W. B., Coleman D. C., Wiebe W. J. 1998; Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583 [View Article][PubMed]
    [Google Scholar]
  27. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of Methane by bacterial extracts. J Biol Chem 238:2882–2886[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001166
Loading
/content/journal/ijsem/10.1099/ijsem.0.001166
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error