1887

Abstract

A Gram-staining-negative, rod-shaped, strictly aerobic, non-flagellated, non-gliding and yellow-pigmented bacterial strain, designated as strain CZ1127, capable of utilizing sulfated fucan, was isolated from shallow coastal seawater of Jiaozhou Bay, Qingdao, PR China. Its taxonomic position was investigated by a polyphasic approach. CZ1127 grew at 15–37 °C (optimum, 25 °C), pH 5.5–9.0 (optimum, pH 6.5–7.5) and in the presence of 0–4 % (w/v) NaCl [optimum, 0–3 % (w/v)]. CZ1127 contained MK-6 as the sole menaquinone, and iso-C, iso-C 3-OH, Cω7/Cω6 and iso-C 3-OH as its major fatty acids. The DNA G+C content of strain CZ1127 was 32.2 mol%. Phylogenetic analysis based on the 16S rRNA gene indicated that strain CZ1127 clustered with members of the genus and was closely related to CGMCC 1.12162 (97.4 % 16S rRNA gene sequence similarity) and KCTC 42246 (96.1 %). The DNA–DNA relatedness between strain CZ1127 and CGMCC 1.12162 was 41.9±1.5 %. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, CZ1127 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CZ1127 (=CCTCC AB 2015089=KCTC 42864).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001184
2016-09-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3270.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001184&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [View Article][PubMed]
    [Google Scholar]
  2. Bernardet J. F., Nakagawa Y., Holmes B. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  3. Berteau O., Mulloy B. 2003; Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 13:29R–40R [View Article][PubMed]
    [Google Scholar]
  4. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  5. Chang Y., Xue C., Tang Q., Li D., Wu X., Wang J. 2010; Isolation and characterization of a sea cucumber fucoidan-utilizing marine bacterium. Lett Appl Microbiol 50:301–307 [View Article][PubMed]
    [Google Scholar]
  6. Chang Y., McClements D. J. 2015; Interfacial deposition of an anionic polysaccharide (fucoidan) on protein-coated lipid droplets: Impact on the stability of fish oil-in-water emulsions. Food Hydrocolloids 51:252–260 [View Article]
    [Google Scholar]
  7. Chang Y., Hu Y., McClements D. J. 2016; Competitive adsorption and displacement of anionic polysaccharides (fucoidan and gum arabic) on the surface of protein-coated lipid droplets. Food Hydrocolloids 52:820–826 [View Article]
    [Google Scholar]
  8. Chang Y., Hu Y., Yu L., McClements D. J., Xu X., Liu G., Xue C. 2016; Primary structure and chain conformation of fucoidan extracted from sea cucumber Holothuria tubulosa . Carbohydr Polym 136:1091–1097 [CrossRef]
    [Google Scholar]
  9. Choi A., Yang S. J., Cho J. C. 2013; Lutibacter flavus sp. nov., a marine bacterium isolated from a tidal flat sediment. Int J Syst Evol Microbiol 63:946–951 [CrossRef]
    [Google Scholar]
  10. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef]
    [Google Scholar]
  11. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  12. Descamps V., Colin S., Lahaye M., Jam M., Richard C., Potin P., Barbeyron T., Yvin J. C., Kloareg B. 2006; Isolation and culture of a marine bacterium degrading the sulfated fucans from marine brown algae. Mar Biotechnol 8:27–39 [CrossRef]
    [Google Scholar]
  13. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956; Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356 [CrossRef]
    [Google Scholar]
  14. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. Huss V. A., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  16. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Method Microbiol 19:161–207 [CrossRef]
    [Google Scholar]
  17. Liu Y., Liu L. Z., Liu H. C., Zhou Y. G., Qi F. J., Liu Z. P. 2014; Wenyingzhuangia marina gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from a recirculating mariculture system. Int J Syst Evol Microbiol 64:469–474 [CrossRef]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic-acid by high- performance liquid-chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  19. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  20. Park S. C., Choe H. N., Hwang Y. M., Baik K. S., Seong C. N. 2013; Lutibacter agarilyticus sp. nov., a marine bacterium isolated from shallow coastal seawater. Int J Syst Evol Microbiol 63:2678–2683 [CrossRef]
    [Google Scholar]
  21. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [CrossRef]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  24. Vo T. S., Kim S. K. 2013; Fucoidans as a natural bioactive ingredient for functional foods. J Funct Foods 5:16–27 [CrossRef]
    [Google Scholar]
  25. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad-hoc-committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  26. Wijesinghe W. A. J. P., Jeon Y. J. 2012; Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydr Polym 88:13–20 [CrossRef]
    [Google Scholar]
  27. Yoon J., Kasai H. 2015; Wenyingzhuangia heitensis sp. nov., a new species of the family Flavobacteriaceae within the phylum Bacteroidetes isolated from seawater. Antonie Van Leeuwenhoek 107:655–661 [View Article][PubMed]
    [Google Scholar]
  28. Yoon J., Oku N., Kasai H. 2015; Wenyingzhuangia gracilariae sp. nov., a novel marine bacterium of the phylum Bacteroidetes isolated from the red alga Gracilaria vermiculophylla . Antonie Van Leeuwenhoek 107:1607–1613 [View Article][PubMed]
    [Google Scholar]
  29. Yu L., Xu X., Xue C., Chang Y., Ge L., Wang Y., Zhang C., Liu G., He C. 2013; Enzymatic preparation and structural determination of oligosaccharides derived from sea cucumber (Acaudina molpadioides) fucoidan. Food Chem 139:702–709 [CrossRef]
    [Google Scholar]
  30. Yu L., Xue C., Chang Y., Xu X., Ge L., Liu G., Wang Y. 2014; Structure elucidation of fucoidan composed of a novel tetrafucose repeating unit from sea cucumber Thelenota ananas . Food Chem 146:113–119 [CrossRef]
    [Google Scholar]
  31. Yu L., Xue C., Chang Y., Hu Y., Xu X., Ge L., Liu G. 2015; Structure and rheological characteristics of fucoidan from sea cucumber Apostichopus japonicus . Food Chem 180:71–76 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001184
Loading
/content/journal/ijsem/10.1099/ijsem.0.001184
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error