1887

Abstract

A hyperthermophilic, autotrophic iron and nitrate reducer, strain Su06, was isolated from an active deep-sea hydrothermal vent chimney on the Endeavour Segment in the north-eastern Pacific Ocean. It was obligately anaerobic, hydrogenotrophic and reduced Fe(III) oxide to magnetite and NO to N. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain was more than 97 % similar to other species of the genera and . Therefore, overall genome relatedness index analyses were performed to establish whether strain Su06 represents a novel species. For each analysis, strain Su06 was most similar to PL-19. Relative to this strain, the average nucleotide identity score for strain Su06 was 72 %, the genome-to-genome direct comparison score was 13–19 % and the species identification score at the protein level was 89 %. For each analysis, strain Su06 was below the species delineation cutoff. Based on its whole genome sequence and its unique phenotypic characteristics, strain Su06 is suggested to represent a novel species of the genus , for which the name is proposed. The type strain is Su06 (=DSM 28599=ATCC BAA-2559).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001201
2016-09-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3372.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001201&mimeType=html&fmt=ahah

References

  1. Afshar S., Kim C., Monbouquette H. G., Schroder I. 1998; Effect of tungstate on nitrate reduction by the hyperthermophilic archaeon pyrobaculum aerophilum . Appl Environ Microbiol 64:3004–3008[PubMed]
    [Google Scholar]
  2. Anderson I., Göker M., Nolan M., Lucas S., Hammon N., Deshpande S., Cheng J. F., Tapia R., Han C. et al. 2011; Complete genome sequence of the hyperthermophilic chemolithoautotroph Pyrolobus fumarii type strain 1A. Stand Genomic Sci 4:381–392 [View Article][PubMed]
    [Google Scholar]
  3. Blöchl E., Rachel R., Burggraf S., Hafenbradl D., Jannasch H. W., Stetter K. O. 1997; Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1:14–21[PubMed] [CrossRef]
    [Google Scholar]
  4. Brügger K., Chen L., Stark M., Zibat A., Redder P., Ruepp A., Awayez M., She Q., Garrett R. A. et al. 2007; The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108°C. Archaea 2:127–135 [View Article][PubMed]
    [Google Scholar]
  5. Chun J., Rainey F. A. 2014; Integrating genomics into the taxonomy and systematics of the bacteria and Archaea. Int J Syst Evol Microbiol 64:316–324 [View Article][PubMed]
    [Google Scholar]
  6. Cole J. R., Chai B., Farris R. J., Wang Q., Kulam-Syed-Mohideen A. S., McGarrell D. M., Bandela A. M., Cardenas E., Garrity G. M. et al. 2007; The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:D169–D172 [View Article][PubMed]
    [Google Scholar]
  7. Grasshoff K., Ehrhardt M., Kremling K. 1983 Methods of Seawater Analysis, 2nd edn. Deerfield Beach, Florida: Verlag Chemie;
    [Google Scholar]
  8. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliams H., Valentin F., Wallance I. M., Wilm A. et al. 2007; clustalw and clustalx version 2.0. Bioinformatics . 232947–2948
  9. Lin T. J., Breves E. A., Dyar M. D., Ver Eecke H. C., Jamieson J. W., Holden J. F. 2014; Magnetite formation from ferrihydrite by hyperthermophilic archaea from Endeavour segment, Juan de Fuca Ridge hydrothermal vent chimneys. Geobiology 12:200–211 [View Article][PubMed]
    [Google Scholar]
  10. McGinnis S., Madden T. L. 2004; blast: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32:W20–W25 [View Article][PubMed]
    [Google Scholar]
  11. Meier-Kolthoff J. P., Klenk H. P., Göker M. 2014; Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64:352–356 [View Article][PubMed]
    [Google Scholar]
  12. Mende D. R., Sunagawa S., Zeller G., Bork P. 2013; Accurate and universal delineation of prokaryotic species. Nat Methods 10:881–887 [View Article][PubMed]
    [Google Scholar]
  13. Petersen T. N., Brunak S., von Heijne G., Nielsen H. 2011; SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786 [View Article][PubMed]
    [Google Scholar]
  14. Pley U., Schipka J., Gambacorta A., Jannasch H. W., Fricke H., Rachel R., Stetter K. O. 1991; Pyrodictium abyssi sp. nov. represents a Novel Heterotrophic Marine Archaeal Hyperthermophile growing at 110°C. Syst Appl Microbiol 14:245–253 [CrossRef]
    [Google Scholar]
  15. Richter M., Rosselló-Móra R., Glöckner F., Peplies J. 2015; JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931 [View Article][PubMed]
    [Google Scholar]
  16. Stetter K. O., König H., Stackebrandt E. 1983; Pyrodictium gen. nov., a new genus of submarine disc-shaped Sulphur reducing Archaebacteria growing optimally at 105°C. Syst Appl Microbiol 4:535–551 [View Article][PubMed]
    [Google Scholar]
  17. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  18. Utturkar S. M., Huber H., Leptihn S., Loh B., Brown S. D., Stetter K. O., Podar M. 2016; Draft genome sequence of P yrodictium occultum PL19T, a marine Hyperthermophilic species of archaea that grows optimally at 105°C. Genome Announc 4:e0001616 [View Article][PubMed]
    [Google Scholar]
  19. Ver Eecke H. C., Kelley D. S., Holden J. F. 2009; Abundances of hyperthermophilic autotrophic Fe(III) oxide reducers and heterotrophs in hydrothermal sulfide chimneys of the northeastern Pacific Ocean. Appl Environ Microbiol 75:242–245 [View Article][PubMed]
    [Google Scholar]
  20. Weber K. A., Achenbach L. A., Coates J. D. 2006; Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764 [View Article][PubMed]
    [Google Scholar]
  21. Zillig W., Holz I., Janekovic D., Klenk H. P., Imsel E., Trent J., Wunderl S., Forjaz V. H., Coutinho R. et al. 1990; Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001201
Loading
/content/journal/ijsem/10.1099/ijsem.0.001201
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error