1887

Abstract

Mexican periwinkle virescence (MPV) phytoplasma was originally discovered in diseased plants of Madagascar periwinkle () in Yucatán, Mexico. On the basis of results from RFLP analysis of PCR-amplified 16S rRNA gene sequences, strain MPV was previously classified as the first known member of phytoplasma group 16SrXIII, and a new subgroup (16SrXIII-A) was established to accommodate MPV phytoplasma. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain MPV represents a lineage distinct from previously described ‘ ’ species. Nucleotide sequence alignments revealed that strain MPV shared less than 97.5 % 16S rRNA gene sequence similarity with all previously described ‘ ’ species. Based on unique properties of the DNA, we propose recognition of Mexican periwinkle virescence phytoplasma strain MPV as representative of a novel taxon, ‘ hispanicum’.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001218
2016-09-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3463.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001218&mimeType=html&fmt=ahah

References

  1. Arneodo J. D., Marini D. C., Galdeano E., Meneguzzi N., Bacci M., Domecq C., Nome S. F., Conci L. R. 2007; Diversity and geographical distribution of phytoplasmas infecting china-tree in Argentina. J Phytopathol 155:70–75 [View Article]
    [Google Scholar]
  2. Davis R. E., Sinclair W. A. 1998; Phytoplasma identity and disease etiology. Phytopathology 88:1372–1376 [View Article][PubMed]
    [Google Scholar]
  3. Davis R. E., Jomantiene R., Zhao Y. 2007; Dynamic structures in phytoplasma genomes: sequence-variable mosaics (SVMs) of clustered genes. Bull Insectol 60:119–120
    [Google Scholar]
  4. Fernández F. D., Meneguzzi N. G., Guzmán F. A., Kirschbaum D. S., Conci V. C., Nome C. F., Conci L. R. 2015; Detection and identification of a novel 16SrXIII subgroup phytoplasma associated with strawberry red leaf disease in Argentina. Int J Syst Evol Microbiol 65:2741–2747 [View Article][PubMed]
    [Google Scholar]
  5. Gundersen D. E., Lee I. M., Rehner S. A., Davis R. E., Kingsbury D. T. 1994; Phylogeny of mycoplasmalike organisms (phytoplasmas): a basis for their classification. J Bacteriol 176:5244–5254[PubMed]
    [Google Scholar]
  6. Harrison N. A., Legard D. E., DiBonito R., Richardson P. A. 1997; Detection and differentiation of phytoplasmas associated with diseases of strawberry in Florida. Plant Dis 81:230 [View Article]
    [Google Scholar]
  7. Harrison N. A., Boa E., Carpio M. L. 2003; Characterization of phytoplasmas detected in Chinaberry trees with symptoms of leaf yellowing and decline in Bolivia. Plant Pathol 52:147–157 [View Article]
    [Google Scholar]
  8. Harrison N. A., Davis R. E., Oropeza C., Helmick E. E., Narváez M., Eden-Green S., Dollet M., Dickinson M. 2014; ‘Candidatus Phytoplasma palmicola', associated with a lethal yellowing-type disease of coconut (Cocos nucifera L.) in Mozambique. Int J Syst Evol Microbiol 64:1890–1899 [View Article][PubMed]
    [Google Scholar]
  9. Holguín-Peña R. J., Vázquez-Juárez R. C., Martínez-Soriano J. P. 2007; First report of a 16SrI-B group phytoplasma associated with a yellows-type disease affecting tomato plants in the Baja California Peninsula of Mexico. Plant Disease 91:328 [View Article]
    [Google Scholar]
  10. IRPCM (International Research Program for Comparative Mycoplasmology) 2004; ‘Candidatus Phytoplasma', a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54:1243–1255 [View Article][PubMed]
    [Google Scholar]
  11. Jomantiene R., Davis R. E., Maas J., Dally E. L. 1998; Classification of new phytoplasmas associated with diseases of strawberry in Florida, based on analysis of 16S rRNA and ribosomal protein gene operon sequences. Int J Syst Bacteriol 48:269–277 [View Article][PubMed]
    [Google Scholar]
  12. Jomantiene R., Davis R. E. 2006; Clusters of diverse genes existing as multiple, sequence-variable mosaics in a phytoplasma genome. FEMS Microbiol Lett 255:59–65 [View Article][PubMed]
    [Google Scholar]
  13. Lee I.-M., Gundersen-Rindal D. E., Davis R. E., Bartoszyk I. M. 1998; Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int Syst Bacteriol 48:1153–1169 [View Article]
    [Google Scholar]
  14. Lee I. M., Davis R. E., Gundersen-Rindal D. E. 2000; Phytoplasma: phytopathogenic mollicutes. Ann Rev Microbiol 54:221–255 [View Article][PubMed]
    [Google Scholar]
  15. MacLean A. M., Sugio A., Makarova O. V., Findlay K. C., Grieve V. M., Tóth R., Nicolaisen M., Hogenhout S. A. 2011; Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in arabidopsis plants. Plant Physiol 157:831–841 [View Article][PubMed]
    [Google Scholar]
  16. Melo L., Silva E., Flôres D., Ventura J., Costa H., Bedendo I. 2013; A phytoplasma representative of a new subgroup, 16SrXIII-E, associated with Papaya apical curl necrosis. Eur J Plant Pathol 137:445–450 [View Article]
    [Google Scholar]
  17. Minato N., Himeno M., Hoshi A., Maejima K., Komatsu K., Takebayashi Y., Kasahara H., Yusa A., Yamaji Y. et al. 2014; The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Sci Rep 4:7399 [View Article][PubMed]
    [Google Scholar]
  18. Šafářová D., Zemánek T., Válová P., Navrátil M. 2016; ‘Candidatus Phytoplasma cirsii’, a novel taxon from creeping thistle [Cirsium arvense (L.) Scop.]. Int J Syst Evol Microbiol 66:1745–1753 [View Article]
    [Google Scholar]
  19. Santos-Cervantes M. E., Chávez-Medina J. A., Acosta-Pardini J., Flores-Zamora G. L., Méndez-Lozano J., Leyva-López N. E. 2010; Genetic diversity and geographical distribution of phytoplasmas associated with potato purple top disease in Mexico. Plant Dis 94:388–395 [View Article]
    [Google Scholar]
  20. Sugio A., MacLean A. M., Kingdom H. N., Grieve V. M., Manimekalai R., Hogenhout S. A. 2011; Diverse targets of phytoplasma effectors: from plant development to defense against insects. Ann Rev Phytopathol 49:175–195 [View Article][PubMed]
    [Google Scholar]
  21. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  22. Wei W., Davis R. E., Lee I. M., Zhao Y. 2007; Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol 57:1855–1867 [View Article][PubMed]
    [Google Scholar]
  23. Wei W., Davis R. E., Jomantiene R., Zhao Y. 2008a; Ancient, recurrent phage attacks and recombination shaped dynamic sequence-variable mosaics at the root of phytoplasma genome evolution. Proc Natl Acad Sci USA 105:11827–11832 [View Article]
    [Google Scholar]
  24. Wei W., Lee I. M., Davis R. E., Suo X., Zhao Y. 2008b; Automated RFLP pattern comparison and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. Int J Syst Evol Microbiol 58:2368–2377 [View Article][PubMed]
    [Google Scholar]
  25. Wei W., Davis R. E., Nuss D. L., Zhao Y. 2013; Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture. Proc Natl Acad Sci USA 110:19149–19154 [View Article][PubMed]
    [Google Scholar]
  26. Zhao Y., Wei W., Lee I. M., Shao J., Suo X., Davis R. E. 2009; Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int J Syst Evol Microbiol 59:2582–2593 [View Article][PubMed]
    [Google Scholar]
  27. Zhao Y., Wei W., Davis R. E., Lee I.-M. 2010; Recent advances in 16S rRNA gene-based phytoplasma differentiation, classification and taxonomy. In Phytoplasmas: Genomes, Plant Hosts and Vector , pp. 64–92 Edited by Weintraub P., Jones P. Wallingford, UK: CABI Publishing;
    [Google Scholar]
  28. Zhao Y., Davis R. E., Wei W., Shao J., Jomantiene R. 2014; Phytoplasma genomes: Evolution through mutually complementary mechanisms, gene loss and horizontal acquisition. In Genomics of Plant-Associated Bacteria pp 235–271 Edited by Gross D. C., Lichens-Park A., Kole C. Heidelberg, Germany: Springer-Verlag Berlin and Heidelberg GmbH & Co;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001218
Loading
/content/journal/ijsem/10.1099/ijsem.0.001218
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error