1887

Abstract

Strain NRRL B-41902 and three closely related strains were isolated from iceberg lettuce. The strain was found to consist of strictly aerobic, Gram-stain-negative rods that formed cocci in late stationary phase. 16S rRNA gene sequence analysis showed that strain NRRL B-41902 was most closely related to species within the genera , and that a grouping of it and the three other closely related strains was most closely related to the type strain of , which was also confirmed through a phylogenomic analysis. Moreover, DNA–DNA hybridization analysis revealed a substantial amount of genomic divergence (39.1 %) between strain NRRL B-41902 and the type strain of , which is expected if the strains represent distinct species. Further phenotypic analysis revealed that strain NRRL B-41902 was able to utilize a combination of -serine, citraconic acid and citramalic acid, which differentiated it from other, closely related species. Therefore, strain NRRL B-41902 (=CCUG 68785) is proposed as the type strain of a novel species, sp. nov.

Keyword(s): Acinetobacter
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001234
2016-09-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3566.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001234&mimeType=html&fmt=ahah

References

  1. Beijerinck M. W. 1911; Über pigmentbildung bei essigbakterien. Proc K Ned Akad Wet 13:1066–1077
    [Google Scholar]
  2. Brisou J., Prévot A. R. 1954; Étude de systématique bactérienne X. Révision de espèces réunies dans le genre Achromobacter . Ann Inst Pasteur 86:722–728
    [Google Scholar]
  3. de Hoon M. J., Imoto S., Nolan J., Miyano S. 2004; Open source clustering software. Bioinformatics 20:1453–1454 [View Article][PubMed]
    [Google Scholar]
  4. Edgar R. C. 2004; muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113 [View Article][PubMed]
    [Google Scholar]
  5. Feng G., Yang S., Wang Y., Yao Q., Zhu H. 2014; Acinetobacter refrigeratoris sp. nov., isolated from a domestic refrigerator. Curr Microbiol 69:888–893 [View Article][PubMed]
    [Google Scholar]
  6. Feng G., Yang S., Wang Y., Yao Q., Zhu H. 2015; Erratum to:Acinetobacter refrigeratoris sp. nov., Isolated from a Domestic Refrigerator. Curr Microbiol 70:150 [View Article][PubMed]
    [Google Scholar]
  7. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M. 2007; DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91 [View Article][PubMed]
    [Google Scholar]
  8. Henriksen S. D. 1973; Moraxella, Acinetobacter, and the Mimeae . Bacteriol Rev 37:522–561[PubMed]
    [Google Scholar]
  9. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  10. Kang Y. S., Jung J., Jeon C. O., Park W. 2011; Acinetobacter oleivorans sp. nov. is capable of adhering to and growing on diesel-oil. J Microbiol 49:29–34 [View Article][PubMed]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  12. Kim M., Oh H. S., Park S. C., Chun J. 2014; Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351 [View Article][PubMed]
    [Google Scholar]
  13. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics , pp. 115–147 Edited by Goodfellow M., Stackebrandt E. Chichester, UK: John Wiley;
    [Google Scholar]
  14. Lee H. J., Lee S. S. 2010; Acinetobacter kyonggiensis sp. nov., a β-glucosidase-producing bacterium, isolated from sewage treatment plant. J Microbiol 48:754–759 [View Article][PubMed]
    [Google Scholar]
  15. Lee I., Kim Y. O., Park S. C., Chun J. 2016; OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103 [CrossRef]
    [Google Scholar]
  16. Marchesi J. R., Sato T., Weightman A. J., Martin T. A., Fry J. C., Hiom S. J., Dymock D., Wade W. G. 1998; Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799[PubMed]
    [Google Scholar]
  17. Park M., Deck J., Foley S. L., Nayak R., Songer J. G., Seibel J. R., Khan S. A., Rooney A. P., Hecht D. W., Rafii F. 2016; Diversity of Clostridium perfringens isolates from various sources and prevalence of conjugative plasmids. Anaerobe 38:25–35 [View Article][PubMed]
    [Google Scholar]
  18. Richter M., Rosselló-Móra R. 2009; Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  19. Rooney A. P., Swezey J. L., Friedman R., Hecht D. W., Maddox C. W. 2006; Analysis of core housekeeping and virulence genes reveals cryptic lineages of Clostridium perfringens that are associated with distinct disease presentations. Genetics 172:2081–2092 [View Article][PubMed]
    [Google Scholar]
  20. Rooney A. P., Price N. P., Ehrhardt C., Swezey J. L., Bannan J. D. 2009; Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. Int J Syst Evol Microbiol 59:2429–2436 [CrossRef]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  22. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology , pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526[PubMed]
    [Google Scholar]
  24. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  25. Touchon M., Cury J., Yoon E. J., Krizova L., Cerqueira G. C., Murphy C., Feldgarden M., Wortman J., Clermont D. et al. 2014; The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences. Genome Biol Evol 6:2866–2882 [View Article][PubMed]
    [Google Scholar]
  26. Yoon J. H., Kim I. G., Oh T. K. 2007; Acinetobacter marinus sp. nov. and Acinetobacter seohaensis sp. nov., isolated from sea water of the Yellow Sea in Korea. J Microbiol Biotechnol 17:1743–1750[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001234
Loading
/content/journal/ijsem/10.1099/ijsem.0.001234
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error