1887

Abstract

Kützing ex Gomont, a common genus of the , is widely known as a problematic group. Its simple morphology is not congruent with its genetic heterogeneity and several new generic entities have been described based on 16S rRNA gene sequence analyses from populations with similar morphology. During a study of the diversity of (, ) in Brazil, ten -like strains from south-eastern and mid-western regions were isolated in monospecific cultures and submitted to polyphasic evaluation (morphological, ecological and molecular studies). The populations studied presented homogeneous morphology (trichomes straight, not attenuated and apical cell rounded or obtuse), differing mainly in cell length from the type species of the genus ( Agardh ex Gomont) and occurring as three morphotypes. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the populations studied, with European (Gomont) Anagnostidis & Komárek strains, were placed together in a very distinctive and highly supported clade. Thus, the set of characteristics of the strains resulted in the recognition of the new genus Martins et Branco with two species: as the type species (strains 47PC and 48PC) and (Gomont) Martins et Branco (strains 1PC, 2PC and 38PC). These two species plus one still undetermined lineage, sp., are morphologically and genetically distinguishable, whereas the secondary structures of the D1-D1′, box-B and V3 regions were conserved within each one. The generic name and specific epithets of the new taxa are proposed under the provisions of the International Code of Nomenclature for algae, fungi and plants.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001243
2016-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3632.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001243&mimeType=html&fmt=ahah

References

  1. Bohunická M., Johansen J. R., Fučiková K. 2011; Tapinothrixclintonii sp.nov. (Pseunadabaenaceae, Cyanobacteria), a new species at the nexusof five genera. Fottea 11:127–140 [CrossRef]
    [Google Scholar]
  2. Boyer S. L., Flechtner V. R., Johansen J. R. 2001; Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol 18:1057–1069 [View Article][PubMed]
    [Google Scholar]
  3. Boyer S. L., Johansen J. R., Flechtner V. R. 2002; Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S-23S ITS region. J Phycol 38:1222–1235 [CrossRef]
    [Google Scholar]
  4. Branco L. H. Z., Necchi O., Branco C. C. Z. 1999; Cyanophyceae from lotic ecosystems of São Paulo State, southeastern Brazil. Algol Stud 94:63–87
    [Google Scholar]
  5. Casamatta D., Stanić D., Gantar M., Richardson L. L. 2012; Characterization Roseofilum reptotaenium (Oscillatoriales, Cyanobacteria) gen. et sp. nov. isolated from Caribbean black band disease. Phycologia 51:489–499 [View Article]
    [Google Scholar]
  6. Casamatta D. A., Vis M. L., Sheath R. G. 2003; Cryptic species in cyanobacterial systematics: a case study of Phormidium retzii (Oscillatoriales) using RAPD molecular markers and 16S rDNA sequence data. Aquatic Bot 77:295–309 [View Article]
    [Google Scholar]
  7. Darriba D., Taboada G. L., Doallo R., Posada D. 2012; jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772 [View Article][PubMed]
    [Google Scholar]
  8. Engene N., Rottacker E. C., Kaštovský J., Byrum T., Choi H., Ellisman M. H., Komárek J., Gerwick W. H. 2012; Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolities. Int J Syst Evol Microbiol 62:1171–1178 [View Article][PubMed]
    [Google Scholar]
  9. Engene N., Paul V. J., Byrum T., Gerwick W. H., Thor A., Ellisman M. H. 2013; Five chemically rich species of tropical marine cyanobacteria of the genus Okeania gen. nov. (Oscillatoriales, Cyanoprokaryota). J Phycol 49:1095–1106 [View Article][PubMed]
    [Google Scholar]
  10. Ewing B., Green P. 1998; Base-calling of automated sequencer traces using phred.II. Error probabilities. Genome Res 8:186–194 [View Article][PubMed]
    [Google Scholar]
  11. Ewing B., Hillier L., Wendl M. C., Green P. 1998; Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185[PubMed] [CrossRef]
    [Google Scholar]
  12. Fiore M. F., Sant`Anna C. L., Azevedo M. T. P., Komárek J., Kaštovský J., Sulek J., Lorenzi A. S. 2007; Thecyanobacterial genus Brasilonema, gen. nov., a molecular and phenotypic evaluation. J Phycol 43:789–798 [View Article]
    [Google Scholar]
  13. Geitler L. 1932; Cyanophyceae. In Rabenhorst’s Kryptogamenflora Von Deutschland, Österreich Und Der Schweiz 2 vol. 14 pp. 1196 Verlagsgesellschaft: Aufl. Leipzig, Akademische;
    [Google Scholar]
  14. Genuário D. B., Vaz M. G., Hentschke G. S., Sant'Anna C. L., Fiore M. F. 2015; Halotia gen. nov., a morphologically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. Int J Syst Evol Microbiol 65:663–675 [View Article][PubMed]
    [Google Scholar]
  15. Gomont M. M. 1892; Monographie des Oscillariées (Nostocacées homocystées). Sci Nat Bot Sér 7 15:263–368
    [Google Scholar]
  16. Gordon D., Abajian C., Green P. 1998; Consed: a graphical tool for sequence finishing. Genome Res 8:195–202[PubMed] [CrossRef]
    [Google Scholar]
  17. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  18. Hašler P., Dvořák P., Poulíčková A., Casamatta D. A. 2014; Anovel genus Ammassolinea gen.nov. (Cyanobacteria) isolate from subtropical epipelic habitats. Fottea 14:241–248 [CrossRef]
    [Google Scholar]
  19. Huelsenbeck J. P., Ronquist F. 2001; MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:745–755 [CrossRef]
    [Google Scholar]
  20. Johansen J. R., Kovacik L., Casamatta D. A., Iková K. F., Kaštovský J., Fučiková K., Kaštovský J. 2011; Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia 92:283–302 [View Article]
    [Google Scholar]
  21. Komárek J., Anagnostidis K. 2005; Cyanoprokaryota 1. Teil: Oscillatoriales. In Süβwasserflora Von Mitteleuropa 19/2 pp. 759 Edited by Büdel B., Krienitz L., Gäärtner G., Schagerl M. Verlag, Heidelberg: Elsevier/Spektrum Akademischer;
    [Google Scholar]
  22. Komárek J., Zapomělová E., Šmarda J., Kopecký J., Rejmánková E., Woodhouse J., Neilan B. A., Komárková J. 2013; Polyphasic evaluation of Limnoraphis robusta, a water-bloom forming cyanobacterium from Lake Atitlán, Guatemala, with a description of Limnoraphis gen. nov. Fottea 13:39–52 [CrossRef]
    [Google Scholar]
  23. Komárek J., Kaštovský J., Mareš J., Johansen J. R. 2014; Taxonomic classification of cyanoprokarytes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86:295–335
    [Google Scholar]
  24. Lowe T. M., Eddy S. R. 1997; tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964 [View Article][PubMed]
    [Google Scholar]
  25. Loza V., Perona E., Carmona J., Mateo P. 2013; Phenotypic and genotypic characteristics of Phormidium -like cyanobacteria inhabiting microbial mats are correlated with the trophic status of running waters. J Phycol 48:235–252 [View Article]
    [Google Scholar]
  26. Malone C. F. S., Rigonato J., Laughinghouse H. D., Schmidt ÉC., Bouzon Z. L., Wilmotte A., Fiore M. F., Sant'Anna C. L. 2015; Cephalothrix gen. nov. (Cyanobacteria): towards an intraspecific phylogenetic evaluation by multilocus analyses. Int J Syst Evol Microbiol 65:2993–3007 [View Article][PubMed]
    [Google Scholar]
  27. Martins M. D., Rigonato J., Taboga S. R., Branco L. H. 2016; Proposal of Ancylothrix gen. nov., a new genus of Phormidiaceae (Cyanobacteria, Oscillatoriales) based on a polyphasic approach. Int J Syst Evol Microbiol 66:2396–2405 [View Article][PubMed]
    [Google Scholar]
  28. McGregor G. B. 2007 Freshwater Cyanoprokaryota of North-Eastern Australia. I: Oscillatoriales , pp. 124 Canberra;
    [Google Scholar]
  29. McGregor G. B., Sendall B. C. 2015; Phylogeny and toxicology of Lyngbya wollei (Cyanobacteria, Oscillatoriales) from north-eastern Australia, with a description of Microseira gen. nov. J Phycol 51:109–119 [View Article][PubMed]
    [Google Scholar]
  30. Mühlsteinová R., Johansen J. R., Pietrasiak N., Martins M. P., Osorio-Santos K., Warren S. D. 2014; Polyphasic characterization of Trichocoleus desertorum sp.nov. (Pseudanabaenales, Cyanobacteria) from desert soils and phylogenetic placement of the genus Trichocoleus . Phytotaxa 163:241–261 [CrossRef]
    [Google Scholar]
  31. Neilan B. A., Jacobs D., Del Dot T., Blackall L. L., Hawkins P. R., Cox P. T., Goodman A. E. 1997; rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis . Int J Syst Bacteriol 47:693–697 [View Article][PubMed]
    [Google Scholar]
  32. Osorio-Santos K., Pietrasiak N., Bohunická M., Miscoe L. H., Kováčik L., Martin M. P., Johansen J. R. 2014; Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. EurJ Phycol 49:450–470 [View Article]
    [Google Scholar]
  33. Perkerson III R. B., Johansen J., Kovácik L., Brand J., Kaštovský J., Casamatta D. 2011; Aunique pseudanabaenalean (Cyanobacteria) genus Nodosilineagen. nov. based on morphological and molecular data. J Phycol 47:1397–1412 [CrossRef]
    [Google Scholar]
  34. Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. 1979; Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61 [View Article]
    [Google Scholar]
  35. Sciuto K., Andreoli C., Rascio N., La Rocca N., Moro I. 2012; Polyphasic approach and typification of selected Phormidium strains (Cyanobacteria). Cladistics 1:1–18
    [Google Scholar]
  36. Sheath R. G., Cole K. M. 1992; Biogeography of stream macroalgae in North America. J Phycol 28:448–460 [CrossRef]
    [Google Scholar]
  37. Siegesmund M. A., Johansen J. R., Karsten U., Friedl T. 2008; Coleofasciculus gen. nov. (Cyanobacteria): morphological and molecular criteria forrevision of the genus Microcoleus Gomont. J Phycol 44:1572–1585 [CrossRef]
    [Google Scholar]
  38. Strunecky O., Elster J., Komarek J. 2011; Taxonomic revision of the freshwater cyanobacterium ‘Phormidium’ murrayi = Wilmottia murrayi . Fottea 11:57–71 [View Article]
    [Google Scholar]
  39. Strunecký O., Komárek J., Šmarda J. 2014; Kamptonema (Microcoleaceae, Cyanobacteria), a new genus derived from polyphyletic Phormidium on the basis of combined molecular and cytomorphological marker. Preslia 86:193–207
    [Google Scholar]
  40. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  41. Taton A., Grubisic S., Brambilla E., De Wit R., Wilmotte A. 2003; Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169 [View Article][PubMed]
    [Google Scholar]
  42. Teneva I., Dzhambazov B., Mladenov R., Schirme,r K. 2005; Molecular and phylogenetic characterization of Phormidium species (Cyanoprokaryota) using the cpcB-IGS-cpcA locus. J Phycol 41:188–194 [CrossRef]
    [Google Scholar]
  43. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  44. Turicchia S., Ventura S., Komárková J., Komárek J. 2009; Taxonomic evaluation of cyanobacterial microflora from alkaline marshes of northern Belize. 2. Diversity of oscillatorialean genera. Nova Hedwigia 89:165–200 [View Article]
    [Google Scholar]
  45. Vaz M. G. M. V., Genuário D. B., Andreote A. P., Malone C. F., Sant'Anna C. L., Barbiero L., Fiore M. F. 2015; Pantalinema gen. nov. and gen. nov.: novel pseudanabaenacean genera (Cyanobacteria) isolated from saline-alkaline lakes. Int J Syst Evol Microbiol 65:298–308 [View Article][PubMed]
    [Google Scholar]
  46. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001243
Loading
/content/journal/ijsem/10.1099/ijsem.0.001243
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error