1887

Abstract

One beige-pigmented, Gram-stain-negative, rod-shaped bacterium, strain E3/4, was isolated from a zebrafish, . Phylogenetic analysis based on nearly full-length 16S rRNA gene sequences showed that the isolate shared 98.5 % 16S rRNA gene sequence identity to the type strain of and 97.8 % to the type strain of . Lower 16S rRNA gene sequence similarities (<97.0 %) could be found in comparison with all other species of the genus . DNA–DNA hybridization with LMG 26891 showed a low level of relatedness, <35 %. The main cellular fatty acids of the strain were summed feature 3 fatty acids (Cω7/Cω8), C 3-OH and C. The polyamine pattern of strain E3/4 contained predominantly putrescine and 2-hydroxyputrescine. The major quinone was ubiquinone Q-8. Major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. On the basis of phylogenetic, chemotaxonomic, genomic and phenotypic analyses we propose a novel species of the genus , , with strain E3/4 (=DSM 102221=CCM 8677=CIP 111017) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001244
2016-09-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3625.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001244&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathisc A., Lubitza W., Busse, H.-J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [View Article]
    [Google Scholar]
  2. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S rRNA gene from E. coli . Proc Nati Acad Sci USA 75:4801–4805 [CrossRef]
    [Google Scholar]
  3. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [View Article]
    [Google Scholar]
  4. Busse H.-J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [View Article]
    [Google Scholar]
  5. Du J., Akter S., Won K. H., Singh H., Yin C. S., Kook M. C., Yi T. H. 2016; Undibacterium aquatile sp. nov., isolated from a waterfall. Int J Syst Evol Microbiol 66: in press doi: [View Article]
    [Google Scholar]
  6. Eder W., Wanner G., Ludwig W., Busse H. J., Ziemke-Kägeler F., Lang E. 2011; Description of Undibacterium oligocarboniphilum sp. nov., isolated from purified water, and Undibacterium pigrum strain CCUG 49012 as the type strain of Undibacterium parvum sp. nov., and emended descriptions of the genus Undibacterium and the species Undibacterium pigrum . Int J Syst Evol Microbiol 61:384–391 [View Article][PubMed]
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  8. Felsenstein J. 2005; PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. University of Washington, Seattle: Department of Genome Sciences;
  9. Garrity G. M., Bell J. A., Lilburn T. 2005; Family II. Oxalobacteraceae fam. nov. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 2C p 623 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  10. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Haffter P., Granato M., Brand M., Mullins M. C., Hammerschmidt M., Kane D. A., Odenthal J., van Eeden F. J., Jiang Y. J. et al. 1996; The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio . Development 123:1–36[PubMed]
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of the protein molecules. In Mammalian Protein Metabolism pp 21–132 Edited by Munro H. N. New York: Academic Press; [CrossRef]
    [Google Scholar]
  13. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [View Article][PubMed]
    [Google Scholar]
  14. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  15. Kämpfer P., Rosselló-Mora R., Hermansson M., Persson F., Huber B., Falsen E., Busse H. J. 2007; Undibacterium pigrum gen. nov., sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 57:1510–1515 [View Article][PubMed]
    [Google Scholar]
  16. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  17. Kim S. J., Moon J. Y., Weon H. Y., Hong S. B., Seok S. J., Kwon S. W. 2014; Undibacterium jejuense sp. nov. and Undibacterium seohonense sp. nov., isolated from soil and freshwater, respectively. Int J Syst Evol Microbiol 64:236–241 [View Article][PubMed]
    [Google Scholar]
  18. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  19. Liu Y. Q., Wang B. J., Zhou N., Liu S. J. 2013; Undibacterium terreum sp. nov., isolated from permafrost soil. Int J Syst Evol Microbiol 63:2296–2300 [View Article][PubMed]
    [Google Scholar]
  20. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. 2004; ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  21. Pruesse E., Peplies J., Glöckner F. O. 2012; SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  22. Sheu S. Y., Lin Y. S., Chen J. C., Chen W. M. 2014; Undibacterium macrobrachii sp. nov., isolated from a freshwater shrimp culture pond. Int J Syst Evol Microbiol 64:1036–1042 [View Article][PubMed]
    [Google Scholar]
  23. Stamatakis A. 2006; RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690 [View Article][PubMed]
    [Google Scholar]
  24. Stolz A., Busse H.-J., Kämpfer P. 2007; Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57:572–576 [View Article][PubMed]
    [Google Scholar]
  25. Tindall B. J. 1990a; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  26. Tindall B. J. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  27. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R. 2008; The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250 [View Article][PubMed]
    [Google Scholar]
  28. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001244
Loading
/content/journal/ijsem/10.1099/ijsem.0.001244
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error