1887

Abstract

Four hydrophobic bacteria were isolated from sediment at Guiyu, an electronic-waste recycling site in southeastern China. The isolates had high cell surface hydrophobicity with microbial-adhesion-to-hydrocarbon score of 71.4 %. 16S rRNA gene sequences of the strains all showed highest similarity to the hydrophilic DSM 6383 (99.9 % 16S rRNA gene sequence similarity), followed by DSM 25410 (97.1 %). However, DNA–DNA hybridization revealed that the isolates and DSM 6383 exhibited low DNA–DNA relatedness with a hybridization value of 54.5±0.5 %. The genomic DNA G+C content was 64.2 mol% and the predominant quinone was ubiquinone Q-10. Spermidine was the major polyamine component. The major fatty acids were Cω7, Cω7, C, C 2-OH and C. In contrast to its closest relative DSM 6383, the isolates had a much higher proportion of C and C and a much lower proportion of Cω9. Sphingoglycolipid was present and diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylmonomethylethanolamine were detected in the polar lipid pattern. Phosphatidyldimethylethanolamine and phosphatidylcholine, which are present in DSM 6383, were not detected in the isolates. Results of DNA–DNA relatedness, cell surface hydrophobicity, fatty acids, polar lipids, and biochemical and physiological properties reveal that the isolates represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is C1 (=CCTCC AB 2015198=KCTC 42740).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001287
2016-10-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/3912.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001287&mimeType=html&fmt=ahah

References

  1. Abbasnezhad H., Gray M., Foght J. M. 2011; Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Appl Microbiol Biotechnol 92:653–675 [View Article][PubMed]
    [Google Scholar]
  2. Ahmed I., Yokota A., Fujiwara T. 2007; A novel highly boron tolerant bacterium, Bacillus boroniphilus sp. nov., isolated from soil, that requires boron for its growth. Extremophiles 11:217–224 [View Article][PubMed]
    [Google Scholar]
  3. Aylward F. O., McDonald B. R., Adams S. M., Valenzuela A., Schmidt R. A., Goodwin L. A., Woyke T., Currie C. R., Suen G., Poulsen M. 2013; Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol 79:3724–3733 [View Article][PubMed]
    [Google Scholar]
  4. Bastiaens L., Springael D., Wattiau P., Harms H., deWachter R., Verachtert H., Diels L. 2000; Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl Environ Microbiol 66:1834–1843 [View Article][PubMed]
    [Google Scholar]
  5. Bouchez-Naïtali M., Rakatozafy H., Marchal R., Leveau J. Y., Vandecasteele J. P. 1999; Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol 86:421–428 [View Article][PubMed]
    [Google Scholar]
  6. Busse H.-J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [View Article]
    [Google Scholar]
  7. Cunliffe M., Kertesz M. A. 2006; Autecological properties of soil sphingomonads involved in the degradation of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 72:1083–1089 [View Article][PubMed]
    [Google Scholar]
  8. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. P. 1994 Manual of Methods for General Bacteriology Washington, DC: ASM Press;
    [Google Scholar]
  9. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [View Article][PubMed]
    [Google Scholar]
  10. Kaneko A., Miyadai H., Danbara H., Kawahara K. 2000; Construction of mutants of Sphingomonas paucimobilis defective in terminal mannose in the glycosphingolipid. Biosci Biotechnol Biochem 64:1298–1301 [View Article][PubMed]
    [Google Scholar]
  11. Kawahara K., Kuraishi H., Zähringer U. 1999; Chemical structure and function of glycosphingolipids of Sphingomonas spp and their distribution among members of the alpha-4 subclass of Proteobacteria. J Ind Microbiol Biotechnol 23:408–413 [View Article][PubMed]
    [Google Scholar]
  12. Kim Y. M., Nam I. H., Murugesan K., Schmidt S., Crowley D. E., Chang Y. S. 2007; Biodegradation of diphenyl ether and transformation of selected brominated congeners by Sphingomonas sp. PH-07. Appl Microbiol Biotechnol 77:187–194 [View Article][PubMed]
    [Google Scholar]
  13. Kohlmeier S., Smits T. H., Ford R. M., Keel C., Harms H., Wick L. Y. 2005; Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol 39:4640–4646 [View Article][PubMed]
    [Google Scholar]
  14. Kumari H., Gupta S. K., Jindal S., Katoch P., Rup Lal R. 2009; Sphingobium lactosutens sp. nov., isolated from a hexachlorocyclohexane dump site and Sphingobium abikonense sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 59:2291–2296 [View Article][PubMed]
    [Google Scholar]
  15. Leung A., Cai Z. W., Wong M. H. 2006; Environmental contamination from electronic waste recycling at Guiyu, southeast China. J Mater Cycles Waste Manag 8:21–33 [View Article]
    [Google Scholar]
  16. Leys N. M., Ryngaert A., Bastiaens L., Verstraete W., Top E. M., Springael D. 2004; Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70:1944–1955 [View Article][PubMed]
    [Google Scholar]
  17. Li L., Liu H., Shi Z., Wang G. 2013; Sphingobium cupriresistens sp. nov., a copper-resistant bacterium isolated from copper mine soil, and emended description of the genus Sphingobium. Int J Syst Evol Microbiol 63:604–609 [View Article][PubMed]
    [Google Scholar]
  18. Moore D. D., Dowhan D. 1995; Preparation and analysis of DNA. In Current Protocols in Molecular Biology pp 2–11 Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  19. Niharika N., Moskalikova H., Kaur J., Khan F., Sedlackova M., Hampl A., Damborsky J., Prokop Z., Lal R. 2013; Sphingobium czechense sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 63:723–728 [View Article][PubMed]
    [Google Scholar]
  20. Nishijima M., Araki-Sakai M., Sano H. 1997; Identification of isoprenoid quinones by frit-FAB liquid chromatography–mass spectrometry for the chemotaxonomy of microorganisms. J Microbiol Methods 28:113–122 [View Article]
    [Google Scholar]
  21. Schmidt S., Wittich R. M., Erdmann D., Wilkes H., Francke W., Fortnagel P. 1992; Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3. Appl Environ Microbiol 58:2744–2750[PubMed]
    [Google Scholar]
  22. Schmidt S., Fortnagel P., Wittich R. M. 1993; Biodegradation and transformation of 4,4'- and 2,4-dihalodiphenyl ethers by Sphingomonas sp. strain SS33. Appl Environ Microbiol 59:3931–3933[PubMed]
    [Google Scholar]
  23. Song Y., Yang R., Guo Z., Zhang M., Wang X., Zhou F. 2000; Distinctness of spore and vegetative cellular fatty acid profiles of some aerobic endospore-forming bacilli. J Microbiol Methods 39:225–241 [View Article][PubMed]
    [Google Scholar]
  24. Stolz A. 2009; Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol 81:793–811 [View Article][PubMed]
    [Google Scholar]
  25. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417 [View Article][PubMed]
    [Google Scholar]
  26. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  27. Widada J., Nojiri H., Kasuga K., Yoshida T., Habe H., Omori T. 2002; Molecular detection and diversity of polycyclic aromatic hydrocarbon-degrading bacteria isolated from geographically diverse sites. Appl Microbiol Biotechnol 58:202–209 [View Article][PubMed]
    [Google Scholar]
  28. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34:99–119 [View Article][PubMed]
    [Google Scholar]
  29. Yassin A. F., Galinski E. A., Wohlfarth A., Jahnke K.-D., Schaal K. P., Truper H. G. 1993; A new actinomycete species, Nocardiopsis lucentensis sp. nov. Int J Syst Bacteriol 43:266–271 [View Article]
    [Google Scholar]
  30. Young C. C., Ho M.-J., Arun A. B., Chen W.-M., Lai W.-A., Shen F.-T., Rekha P. D., Yassin A. F. 2007; Sphingobium olei sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 57:2613–2617 [View Article][PubMed]
    [Google Scholar]
  31. Young C.-C., Arun A. B., Kämpfer P., Busse H.-J., Lai W.-A., Chen W.-M., Shen F.-T., Rekha P. D. 2008; Sphingobium rhizovicinum sp. nov., isolated from rhizosphere soil of Fortunella hindsii (Champ. ex Benth.) Swingle. Int J Syst Evol Microbiol 58:1801–1806 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001287
Loading
/content/journal/ijsem/10.1099/ijsem.0.001287
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error