1887

Abstract

The recent advances in bacterial species identification methods have led to the rapid taxonomic diversification of the genus . In the present study, phenotypic and molecular methods have been used to determine the taxonomic position of a group of 12 genotypically distinct strains belonging to the (ACB) complex, initially described by Gerner-Smidt and Tjernberg in 1993, that are closely related to . Strains characterized in this study originated mostly from human samples obtained in different countries over a period of 15 years. gene sequences and multilocus sequence typing were used for comparisons against 94 strains representing all species included in the ACB complex. Cluster analysis based on such sequences showed that all 12 strains grouped together in a distinct clade closest to that was supported by bootstrap values of 99 %. Values of average nucleotide identity based on between the genome sequence of strain JVAP01 (NCBI accession no. LJPG00000000) and those of other species from the ACB complex were always <91.2 %, supporting the species status of the group. In addition, the metabolic characteristics of the group matched those of the ACB complex and the analysis of their protein signatures by matrix-assisted laser desorption ionization time-of-flight MS identified some specific peaks. Our results support the designation of these strains as representing a novel species, for which the name sp. nov. is proposed. The type strain is JVAP01 (=CECT 9134=LMG 29605).

Keyword(s): ACB complex , Acinetobacter , ANIb , MLSA and rpoB
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001318
2016-10-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/4105.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001318&mimeType=html&fmt=ahah

References

  1. Bouvet P. J., Grimont P. A. 1987; Identification and biotyping of clinical isolates of Acinetobacter . Ann Inst Pasteur Microbiol 138:569–578 [View Article][PubMed]
    [Google Scholar]
  2. Carretto E., Barbarini D., Dijkshoorn L., van der Reijden T. J., Brisse S., Passet V., Farina C. 2011; Widespread carbapenem resistant Acinetobacter baumannii clones in Italian hospitals revealed by a multicenter study. Infect Genet Evol 11:1319–1326 [View Article]
    [Google Scholar]
  3. Diancourt L., Passet V., Nemec A., Dijkshoorn L., Brisse S. 2010; The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One 5:e10034 [View Article][PubMed]
    [Google Scholar]
  4. Du J., Singh H., Yu H., Jin F. X., Yi T. H. 2016; Acinetobacter plantarum sp. nov. isolated from wheat seedlings plant. Arch Microbiol 198:393–398 [View Article][PubMed]
    [Google Scholar]
  5. Edgar R. C. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  6. Espinal P., Seifert H., Dijkshoorn L., Vila J., Roca I. 2012; Rapid and accurate identification of genomic species from the Acinetobacter baumannii (Ab) group by MALDI-TOF MS. Clin Microbiol Infect 18:1097–1103 [View Article][PubMed]
    [Google Scholar]
  7. Espinal P., Mosqueda N., Telli M., van der Reijden T., Rolo D., Fernández-Orth D., Dijkshoorn L., Roca I., Vila J. 2015; Identification of NDM-1 in a putatively novel acinetobacter species ("NB14") closely related to Acinetobacter pittii . Antimicrob Agents Chemother 59:6657–6660 [View Article][PubMed]
    [Google Scholar]
  8. Feng G., Yang S., Wang Y., Yao Q., Zhu H. 2014a; Acinetobacter refrigeratoris [corrected] sp. nov., isolated from a domestic refrigerator. Curr Microbiol 69:888–893 [View Article]
    [Google Scholar]
  9. Feng G. D., Yang S. Z., Wang Y. H., Deng M. R., Zhu H. H. 2014b; Acinetobacter guangdongensis sp. nov., isolated from abandoned lead-zinc ore. Int J Syst Evol Microbiol 64:3417–3421 [View Article]
    [Google Scholar]
  10. Gundi V. A., Dijkshoorn L., Burignat S., Raoult D., La Scola B. 2009; Validation of partial rpoB gene sequence analysis for the identification of clinically important and emerging Acinetobacter species. Microbiology 155:2333–2341 [View Article][PubMed]
    [Google Scholar]
  11. Kim M., Oh H. S., Park S. C., Chun J. 2014a; Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351 [View Article]
    [Google Scholar]
  12. Kim P. S., Shin N. R., Kim J. Y., Yun J. H., Hyun D. W., Bae J. W. 2014b; Acinetobacter apis sp. nov., isolated from the intestinal tract of a honey bee, Apis mellifera . J Microbiol 52:639–645 [View Article]
    [Google Scholar]
  13. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  14. Krizova L., Maixnerova M., Sedo O., Nemec A. 2014; Acinetobacter bohemicus sp. nov. widespread in natural soil and water ecosystems in the Czech Republic. Syst Appl Microbiol 37:467–473 [View Article][PubMed]
    [Google Scholar]
  15. Krizova L., Maixnerova M., Sedo O., Nemec A. 2015a; Acinetobacter albensis sp. nov., isolated from natural soil and water ecosystems. Int J Syst Evol Microbiol 65:3905–3912 [View Article]
    [Google Scholar]
  16. Krizova L., McGinnis J., Maixnerova M., Nemec M., Poirel L., Mingle L., Sedo O., Wolfgang W., Nemec A. 2015b; Acinetobacter variabilis sp. nov. (formerly DNA group 15 sensu Tjernberg & Ursing), isolated from humans and animals. Int J Syst Evol Microbiol 65:1395 [CrossRef]
    [Google Scholar]
  17. La Scola B., Gundi V. A., Khamis A., Raoult D. 2006; Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. J Clin Microbiol 44:827–832 [View Article][PubMed]
    [Google Scholar]
  18. Li W., Zhang D., Huang X., Qin W. 2014a; Acinetobacter harbinensis sp. nov., isolated from river water. Int J Syst Evol Microbiol 64:1507–1513 [View Article]
    [Google Scholar]
  19. Li Y., He W., Wang T., Piao C. G., Guo L. M., Chang J. P., Guo M. W., Xie S. J. 2014b; Acinetobacter qingfengensis sp. nov., isolated from canker bark of Populus xeuramericana . Int J Syst Evol Microbiol 64:1043–1050 [CrossRef]
    [Google Scholar]
  20. Li Y., Chang J., Guo L. M., Wang H. M., Xie S. J., Piao C. G., He W. 2015; Description of Acinetobacter populi sp. nov. isolated from symptomatic bark of Populus x euramericana canker. Int J Syst Evol Microbiol 65:4461–4468 [View Article][PubMed]
    [Google Scholar]
  21. Montealegre M. C., Maya J. J., Correa A., Espinal P., Mojica M. F., Ruiz S. J., Rosso F., Vila J., Quinn J. P. et al. 2012; First identification of OXA-72 carbapenemase from Acinetobacter pittii in Colombia. Antimicrob Agents Chemother 56:3996–3998 [View Article][PubMed]
    [Google Scholar]
  22. Nemec A., Musílek M., Maixnerová M., De Baere T., van der Reijden T. J., Vaneechoutte M., Dijkshoorn L. 2009; Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. Int J Syst Evol Microbiol 59:118–124 [View Article][PubMed]
    [Google Scholar]
  23. Nemec A., Musílek M., Sedo O., De Baere T., Maixnerová M., van der Reijden T. J., Zdráhal Z., Vaneechoutte M., Dijkshoorn L. 2010; Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively. Int J Syst Evol Microbiol 60:896–903 [View Article][PubMed]
    [Google Scholar]
  24. Nemec A., Krizova L., Maixnerova M., van der Reijden T. J., Deschaght P., Passet V., Vaneechoutte M., Brisse S., Dijkshoorn L. 2011; Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Res Microbiol 162:393–404 [View Article][PubMed]
    [Google Scholar]
  25. Nemec A., Krizova L., Maixnerova M., Sedo O., Brisse S., Higgins P. G. 2015; Acinetobacter seifertii sp. nov., a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex isolated from human clinical specimens. Int J Syst Evol Microbiol 65:934–942 [View Article][PubMed]
    [Google Scholar]
  26. Nemec A., Radolfova-Krizova L., Maixnerova M., Vrestiakova E., Jezek P., Sedo O. 2016; Taxonomy of haemolytic and/or proteolytic strains of the genus Acinetobacter with the proposal of Acinetobacter courvalinii sp. nov. (genomic species 14 sensu Bouvet & Jeanjean), Acinetobacter dispersus sp. nov. (genomic species 17), Acinetobacter modestus sp. nov., Acinetobacter proteolyticus sp. nov. and Acinetobacter vivianii sp. nov. Int J Syst Evol Microbiol 66:1673–1685 [View Article][PubMed]
    [Google Scholar]
  27. Poppel M. T., Skiebe E., Laue M., Bergmann H., Ebersberger I., Garn T., Fruth A., Baumgardt S., Busse H. J. et al. 2015; Acinetobacter equi sp. nov. isolated from horse faeces. Int J Syst Evol Microbiol [View Article][PubMed]
    [Google Scholar]
  28. Richter M., Rosselló-Móra R. 2009; Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  29. Roca I., Marti S., Espinal P., Martínez P., Gibert I., Vila J. 2009; CraA, a major facilitator superfamily efflux pump associated with chloramphenicol resistance in Acinetobacter baumannii . Antimicrob Agents Chemother 53:4013–4014 [View Article][PubMed]
    [Google Scholar]
  30. Roca I., Mosqueda N., Altun B., Espinal P., Akova M., Vila J. 2014; Molecular characterization of NDM-1-producing Acinetobacter pittii isolated from Turkey in 2006. J Antimicrob Chemother 69:3437–3438 [View Article][PubMed]
    [Google Scholar]
  31. Seifert H., Dolzani L., Bressan R., van der Reijden T., van Strijen B., Stefanik D., Heersma H., Dijkshoorn L. 2005; Standardization and interlaboratory reproducibility assessment of pulsed-field gel electrophoresis-generated fingerprints of Acinetobacter baumannii . J Clin Microbiol 43:4328–4335 [View Article][PubMed]
    [Google Scholar]
  32. Smet A., Cools P., Krizova L., Maixnerova M., Sedo O., Haesebrouck F., Kempf M., Nemec A., Vaneechoutte M. 2014; Acinetobacter gandensis sp. nov. isolated from horse and cattle. Int J Syst Evol Microbiol 64:4007–4015 [View Article][PubMed]
    [Google Scholar]
  33. Sousa C., Botelho J., Silva L., Grosso F., Nemec A., Lopes J., Peixe L. 2014; MALDI-TOF MS and chemometric based identification of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex species. Int J Med Microbiol 304:669–677 [View Article][PubMed]
    [Google Scholar]
  34. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  35. Wisplinghoff H., Bischoff T., Tallent S. M., Seifert H., Wenzel R. P., Edmond M. B. 2004; Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001318
Loading
/content/journal/ijsem/10.1099/ijsem.0.001318
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error