1887

Abstract

Phylogenetic studies were performed on a group of novel Gram-stain-positive, anaerobic, non-sporulating rod-shaped bacteria isolated from a thermophilic biogas plant. The novel organisms were able to degrade crystalline cellulose. 16S rRNA gene sequence comparison indicated that the isolates SD1D, SD1G, SD1I and RK1P share 100 % sequence identity, and are most closely related to T3/55 with which they share a 16S rRNA gene sequence similarity of 96.4 %. As a representative of the whole group of isolates, strain SD1D was further characterized. Strain SD1D was catalase-negative, indole-negative, and produced acetate, ethanol, butyric acid and hydrogen as major end-products during fermentative cellobiose utilization. Cells are rod-shaped, growing optimally at 40–65 °C and pH 6.5–8.5. The major cellular fatty acids (>10 %) were C 9,10 dimethyl acetal, C and C. The DNA G+C content was 35.1 mol%. Due to the genetic and phenotypic differences to the most closely affiliated species, the isolates represent a novel species of the genus within the family , for which the name sp. nov. is proposed. The type strain is SD1D(=DSM 100831=CECT 8959).

Keyword(s): Biogas plant and Cellulolytic
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001324
2016-10-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/4132.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001324&mimeType=html&fmt=ahah

References

  1. Biddle A., Stewart L., Blanchard J., Leschine S. 2013; Untangling the genetic basis of fibrolytic specialization by L achnospiraceae and R uminococcaceae in diverse gut communities. Diversity 5:627–640 [View Article]
    [Google Scholar]
  2. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826 [View Article][PubMed]
    [Google Scholar]
  3. DeLong E. F. 2009; The microbial ocean from genomes to biomes. Nature 459:200–206 [View Article][PubMed]
    [Google Scholar]
  4. Euzéby J. 2010; List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 60:1009–1010 [View Article][PubMed]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  6. Gosalbes M. J., Durbán A., Pignatelli M., Abellan J. J., Jiménez-Hernández N., Pérez-Cobas A. E., Latorre A., Moya A. 2011; Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 6:e17447 [View Article][PubMed]
    [Google Scholar]
  7. Hardman J. K., Stadtman T. C. 1960; Metabolism of ω-amino acids. II. Fermentation of Δ-aminovaleric acid by Clostridium aminovalericum sp. nov. J Bacteriol 79:549–552
    [Google Scholar]
  8. Jeong H., Yi H., Sekiguchi Y., Muramatsu M., Kamagata Y., Chun J. 2004; Clostridium jejuense sp. nov., isolated from soil. Int J Syst Evol Microbiol 54:1465–1468 [View Article][PubMed]
    [Google Scholar]
  9. Jeong H., Lim Y. W., Yi H., Sekiguchi Y., Kamagata Y., Chun J. 2007; Anaerosporobacter mobilis gen. nov., sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 57:1784–1787 [View Article][PubMed]
    [Google Scholar]
  10. Johnson E. A., Madia A., Demain A. L. 1981; Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum . Appl Environ Microbiol 41:1060–1062[PubMed]
    [Google Scholar]
  11. Johnson M. J., Thatcher E., Cox M. E. 1995; Techniques for controlling variability in Gram staining of obligate anaerobes. J Clin Microbiol 33:755–758[PubMed]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  13. Kittelmann S., Seedorf H., Walters W. A., Clemente J. C., Knight R., Gordon J. I., Janssen P. H. 2013; Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS One 8:e47879 [View Article][PubMed]
    [Google Scholar]
  14. Koeck D. E., Wibberg D., Maus I., Winkler A., Albersmeier A., Zverlov V. V., Liebl W., Pühler A., Schwarz W. H., Schlüter A. 2014a; Complete genome sequence of the cellulolytic thermophile Ruminoclostridium cellulosi wild-type strain DG5 isolated from a thermophilic biogas plant. J Biotechnol 188:136–137 [View Article][PubMed]
    [Google Scholar]
  15. Koeck D. E., Zverlov V. V., Liebl W., Schwarz W. H. 2014b; Comparative genotyping of Clostridium thermocellum strains isolated from biogas plants: genetic markers and characterization of cellulolytic potential. Syst Appl Microbiol 37:311–319 [View Article][PubMed]
    [Google Scholar]
  16. Koeck D. E., Ludwig W., Wanner G., Zverlov V. V., Liebl W., Schwarz W. H. 2015; Herbinix hemicellulosilytica gen. nov., sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. Int J Syst Evol Microbiol 65: [View Article][PubMed]
    [Google Scholar]
  17. Krause L., Diaz N. N., Edwards R. A., Gartemann K.-H., Krömeke H., Neuweger H., Pühler A., Runte K. J., Schlüter A. et al. 2008; Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. J Biotechnol 136:91–101 [View Article][PubMed]
    [Google Scholar]
  18. Kröber M., Bekel T., Diaz N. N., Goesmann A., Jaenicke S., Krause L., Miller D., Runte K. J., Viehöver P. et al. 2009; Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol 142:38–49 [View Article][PubMed]
    [Google Scholar]
  19. Ludwig W., Schleifer K. -H., Whitman W. B. 2009; Revised road map to the phylum Firmicutes . In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol 3 , pp. 1–13 Edited by De Vos P., MGarrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A. New York, NY: Springer;
    [Google Scholar]
  20. Mechichi T., Labat M., Garcia J. L., Thomas P., Patel B. K. 1999; Characterization of a new xylanolytic bacterium, Clostridium xylanovorans sp. nov. Syst Appl Microbiol 22:366–371 [View Article][PubMed]
    [Google Scholar]
  21. Meehan C. J., Beiko R. G. 2014; A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol 6:703–713 [View Article][PubMed]
    [Google Scholar]
  22. Meyer F., Goesmann A., McHardy A. C., Bartels D., Bekel T., Clausen J., Kalinowski J., Linke B., Rupp O. et al. 2003; GenDB-an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 31:2187–2195 [View Article][PubMed]
    [Google Scholar]
  23. Miller G. L. 1959; Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428 [View Article]
    [Google Scholar]
  24. Munoz R., Yarza P., Ludwig W., Euzéby J., Amann R., Schleifer K. H., Glöckner F. O., Rosselló-Móra R. 2011; Release LTPs104 of the all-species living tree. Syst Appl Microbiol 34:169–170 [View Article][PubMed]
    [Google Scholar]
  25. Parte A. C. 2014; LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42:D613–D616 [View Article][PubMed]
    [Google Scholar]
  26. Podosokorskaya O. A., Bonch-Osmolovskaya E. A., Beskorovaynyy A. V., Toshchakov S. V., Kolganova T. V., Kublanov I. V. 2014; Mobilitalea sibirica gen. nov., sp. nov., a halotolerant polysaccharide-degrading bacterium. Int J Syst Evol Microbiol 64:2657–2661 [View Article][PubMed]
    [Google Scholar]
  27. Rainey F. A. 2009; Family V. Lachnospiraceae . In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol 3 p 921 Edited by De Vos G. M., Garrity D., Jones N. R., Krieg W., Ludwig F. A., Rainey K. H., Whitman W. B. New York, NY: Springer;
    [Google Scholar]
  28. Schlüter A., Bekel T., Diaz N. N., Dondrup M., Eichenlaub R., Gartemann K. H., Krahn I., Krause L., Krömeke H. et al. 2008; The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J Biotechnol 136:77–90 [View Article][PubMed]
    [Google Scholar]
  29. Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M. et al. 2011; Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 7: [View Article][PubMed]
    [Google Scholar]
  30. Sleat R., Mah R. A. 1985; Clostridium populeti sp. nov., a cellulolytic species from a woody-biomass digestor. Inter J Syst Bacteriol 35:160–163 [View Article]
    [Google Scholar]
  31. Stamatakis A. 2006; RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690 [View Article][PubMed]
    [Google Scholar]
  32. Stolze Y., Zakrzewski M., Maus I., Eikmeyer F., Jaenicke S., Rottmann N., Siebner C., Pühler A., Schlüter A. 2015; Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnol Biofuels 8:14 [View Article][PubMed]
    [Google Scholar]
  33. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  34. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266 [View Article][PubMed]
    [Google Scholar]
  35. van Gylswyk N. O. 1980; Fusobacterium polysaccharolyticum sp.nov., a Gram-negative rod from the rumen that produces butyrate and ferments cellulose and starch. J Gen Microbiol 116:157–163 [View Article][PubMed]
    [Google Scholar]
  36. Van Gylswyk N. O., Van der Toorn J. J. T. K. 1985; Eubacterium uniforme sp. nov. and Eubacterium xylanophilum sp. nov., fiber-digesting bacteria from the rumina of sheep fed corn stover. Inter J Syst Bacteriol 35:323–326 [View Article]
    [Google Scholar]
  37. Varel V. H., Tanner R. S., Woese C. R. 1995; Clostridium herbivorans sp. nov., a cellulolytic anaerobe from the pig intestine. Int J Syst Bacteriol 45:490–494 [View Article][PubMed]
    [Google Scholar]
  38. Warnick T. A., Methé B. A., Leschine S. B. 2002; Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol 52:1155–1160 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001324
Loading
/content/journal/ijsem/10.1099/ijsem.0.001324
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error