1887

Abstract

A Gram-negative, aerobic, non-motile bacterium, designated strain KC90B, was isolated from the surface of a cell of the marine diatom . The bacterial cells were pleomorphic and formed very small, beige colonies on marine agar. Optimal growth was obtained at 25 °C, at pH 6.5–7.5 and in the presence of 1.5–2.0 % (w/v) NaCl. Phylogenetic analyses based on its 16S rRNA gene sequence revealed that strain KC90B belonged to the clade and formed a monophyletic cluster with the sequences of , , , and , showing 91.4–95.7 % sequence similarities. Ubiquinone Q-10 was the predominant lipoquinone but a significant amount of ubiquinone Q-9 was also detected. The major cellular fatty acids were C 7, 11-methyl C 7 and C. Strain KC90B also contained specific fatty acids (C, anteiso-C and anteiso-C) that were not detected in its closest described relatives. The major polar lipids of strain KC90B comprised phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol and an unidentified aminolipid. The DNA G+C content of strain KC90B was 65.2 mol%. The phylogenetic analysis of strain KC90B, together with the differential phenotypic and chemotaxonomic properties demonstrate that strain KC90B is distinct from type strains of , , , and . Based on the data presented in this study, strain KC90B represents a novel genus and species within the family , for which the name gen. nov., sp. nov. is proposed. The type strain is KC90B (=DSM 103371=RCC 4681).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001394
2016-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4580.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001394&mimeType=html&fmt=ahah

References

  1. Alavi M., Miller T., Erlandson K., Schneider R., Belas R. 2001; Bacterial community associated with Pfiesteria-like dinoflagellate cultures. Environ Microbiol 3:380–396 [View Article][PubMed]
    [Google Scholar]
  2. Amin S. A., Parker M. S., Armbrust E. V. 2012; Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 76:667–684 [View Article][PubMed]
    [Google Scholar]
  3. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [View Article][PubMed]
    [Google Scholar]
  4. Boettcher K. J., Geaghan K. K., Maloy A. P., Barber B. J. 2005; Roseovarius crassostreae sp. nov., a member of the Roseobacter clade and the apparent cause of juvenile oyster disease (JOD) in cultured Eastern oysters. Int J Syst Evol Microbiol 55:1531–1537 [View Article][PubMed]
    [Google Scholar]
  5. Buchan A., González J. M., Moran M. A. 2005; Overview of the marine Roseobacter lineage. Appl Environ Microbiol 71:5665–5677 [View Article][PubMed]
    [Google Scholar]
  6. Buchan A., LeCleir G. R., Gulvik C. A., González J. M. 2014; Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol 12:686–698 [View Article][PubMed]
    [Google Scholar]
  7. Béjà O., Suzuki M. T., Heidelberg J. F., Nelson W. C., Preston C. M., Hamada T., Eisen J. A., Fraser C. M., DeLong E. F. 2002; Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415:630–633 [View Article][PubMed]
    [Google Scholar]
  8. Campbell B. J., Waidner L. A., Cottrell M. T., Kirchman D. L. 2008; Abundant proteorhodopsin genes in the North Atlantic Ocean. Environ Microbiol 10:99–109 [View Article][PubMed]
    [Google Scholar]
  9. Carini P., Steindler L., Beszteri S., Giovannoni S. J. 2013; Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique' HTCC1062 on a defined medium. ISME J 7:592–602 [View Article][PubMed]
    [Google Scholar]
  10. Choi D. H., Cho J. C., Lanoil B. D., Giovannoni S. J., Cho B. C. 2007; Maribius salinus gen. nov., sp. nov., isolated from a solar saltern and Maribius pelagius sp. nov., cultured from the Sargasso Sea, belonging to the Roseobacter clade. Int J Syst Evol Microbiol 57:270–275 [View Article][PubMed]
    [Google Scholar]
  11. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45:316–354[PubMed]
    [Google Scholar]
  12. Geng H., Belas R. 2010; Molecular mechanisms underlying Roseobacter-phytoplankton symbioses. Curr Opin Biotechnol 21:332–338 [View Article][PubMed]
    [Google Scholar]
  13. González J. M., Simó R., Massana R., Covert J. S., Casamayor E. O., Pedrós-Alió C., Moran M. A., Pedro C. 2000; Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appl Environ Microbiol 66:4237–4246 [View Article][PubMed]
    [Google Scholar]
  14. Green D. H., Llewellyn L. E., Negri A. P., Blackburn S. I., Bolch C. J. 2004; Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiol Ecol 47:345–357 [View Article][PubMed]
    [Google Scholar]
  15. Grossart H. P., Levold F., Allgaier M., Simon M., Brinkhoff T. 2005; Marine diatom species harbour distinct bacterial communities. Environ Microbiol 7:860–873 [View Article][PubMed]
    [Google Scholar]
  16. Humily F., Farrant G. K., Marie D., Partensky F., Mazard S., Perennou M., Labadie K., Aury J. M., Wincker P. et al. 2014; Development of a targeted metagenomic approach to study a genomic region involved in light harvesting in marine Synechococcus. FEMS Microbiol Ecol 88:231–249 [View Article][PubMed]
    [Google Scholar]
  17. Hwang C. Y., Bae G. D., Yih W., Cho B. C. 2009; Marivita cryptomonadis gen. nov., sp. nov. and Marivita litorea sp. nov., of the family Rhodobacteraceae, isolated from marine habitats. Int J Syst Evol Microbiol 59:1568–1575 [View Article][PubMed]
    [Google Scholar]
  18. Jasti S., Sieracki M. E., Poulton N. J., Giewat M. W., Rooney-Varga J. N. 2005; Phylogenetic diversity and specificity of bacteria closely associated with Alexandrium spp. and other phytoplankton. Appl Environ Microbiol 71:3483–3494 [View Article][PubMed]
    [Google Scholar]
  19. Kim J. M., Jung J. Y., Chae H. B., Park W., Jeon C. O. 2010; Hwanghaeicola aestuarii gen. nov., sp. nov., a moderately halophilic bacterium isolated from a tidal flat of the Yellow Sea. Int J Syst Evol Microbiol 60:2877–2881 [View Article][PubMed]
    [Google Scholar]
  20. Kim Y. O., Park S., Nam B. H., Kang S. J., Hur Y. B., Kim D. G., Oh T. K., Yoon J. H. 2012; Description of Litoreibacter meonggei sp. nov., isolated from the sea squirt Halocynthia roretzi, reclassification of Thalassobacter arenae as Litoreibacter arenae comb. nov. and emended description of the genus Litoreibacter Romanenko et al. 2011. Int J Syst Evol Microbiol 62:1825–1831 [View Article][PubMed]
    [Google Scholar]
  21. Lai P. Y., Miao L., Lee O. O., Liu L. L., Zhou X. J., Xu Y., Al-Suwailem A., Qian P. Y. 2013; Profundibacterium mesophilum gen. nov., sp. nov., a novel member in the family Rhodobacteraceae isolated from deep-sea sediment in the Red Sea, Saudi Arabia. Int J Syst Evol Microbiol 63:1007–1012 [View Article][PubMed]
    [Google Scholar]
  22. Lehours A. C., Cottrell M. T., Dahan O., Kirchman D. L., Jeanthon C. 2010; Summer distribution and diversity of aerobic anoxygenic phototrophic bacteria in the Mediterranean Sea in relation to environmental variables. FEMS Microbiol Ecol 74:397–409 [View Article][PubMed]
    [Google Scholar]
  23. Luo H., Moran M. A. 2014; Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev 78:573–587 [View Article][PubMed]
    [Google Scholar]
  24. Marie D., Partensky F., Jacquet S., Vaulot D. 1997; Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl Environ Microbiol 63:186–193[PubMed]
    [Google Scholar]
  25. Mayali X., Franks P. J. S., Azam F. 2008; Cultivation and ecosystem role of a marine Roseobacter clade-affiliated cluster bacterium. Appl Environ Microbiol 74:2595–2603 [View Article][PubMed]
    [Google Scholar]
  26. Meier-Kolthoff J. P., Klenk H. P., Göker M. 2014; Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64:352–356 [View Article][PubMed]
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  28. Mesbah N. M., Whitman W. B., Mesbah M. 2011; Determination of the G+C content of prokaryotes. In Taxonomy of Prokaryotes , pp. 299–324 Edited by Rainey F., Oren A. Waltham, MA: Academic Press; [CrossRef]
    [Google Scholar]
  29. Moran M. A., Buchan A., González J. M., Heidelberg J. F., Whitman W. B., Kiene R. P., Henriksen J. R., King G. M., Belas R. et al. 2004; Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432:910–913 [View Article][PubMed]
    [Google Scholar]
  30. Newton R. J., Griffin L. E., Bowles K. M., Meile C., Gifford S., Givens C. E., Howard E. C., King E., Oakley C. A. et al. 2010; Genome characteristics of a generalist marine bacterial lineage. ISME J 4:784–798 [View Article][PubMed]
    [Google Scholar]
  31. Park S., Yoon J. H. 2013; Roseovarius sediminilitoris sp. nov., isolated from seashore sediment. Int J Syst Evol Microbiol 63:1741–1745 [View Article][PubMed]
    [Google Scholar]
  32. Park S., Park J. M., Lee K. C., Bae K. S., Yoon J. H. 2014; Boseongicola aestuarii gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 64:2618–2624 [View Article][PubMed]
    [Google Scholar]
  33. Park S., Park J. M., Kang C. H., Kim S. G., Yoon J. H. 2015; Pseudoseohaeicola caenipelagi gen. nov., sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 65:1819–1824 [View Article][PubMed]
    [Google Scholar]
  34. Pujalte M. J., Lucena T., Ruvira M. A., Arahal D. R., Macian M. C. 2014; The family Rhodobacteraceae. In Prokaryotes–Alphaproteobacteria Betaproteobacteria , pp. 439–512 Edited by Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F. Berlin, Heidelberg: Springer-Verlag Berlin; [CrossRef]
    [Google Scholar]
  35. Rappé M. S., Connon S. A., Vergin K. L., Giovannoni S. J. 2002; Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633 [View Article][PubMed]
    [Google Scholar]
  36. Sasser M. 1990 Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. In MIDI Tech Note No 101 Newark: Microb ID, Inc;
    [Google Scholar]
  37. Seyedsayamdost M. R., Carr G., Kolter R., Clardy J. 2011; Roseobacticides: small molecule modulators of an algal-bacterial symbiosis. J Am Chem Soc 133:18343–18349 [View Article][PubMed]
    [Google Scholar]
  38. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods Gen Mol Bacteriol , pp. 607–654 Edited by Gerhardt P., Murray R. G., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  39. Swingley W. D., Sadekar S., Mastrian S. D., Matthies H. J., Hao J., Ramos H., Acharya C. R., Conrad A. L., Taylor H. L. et al. 2007; The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photosynthetic metabolism. J Bacteriol 189:683–690 [View Article][PubMed]
    [Google Scholar]
  40. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  41. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  42. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi. Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  43. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods Gen Mol Microbiol, 3rd edn. pp 330–393 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  44. Turner S., Pryer K. M., Miao V. P., Palmer J. D. 1999; Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338 [View Article][PubMed]
    [Google Scholar]
  45. Voget S., Wemheuer B., Brinkhoff T., Vollmers J., Dietrich S., Giebel H. A., Beardsley C., Sardemann C., Bakenhus I. et al. 2015; Adaptation of an abundant Roseobacter RCA organism to pelagic systems revealed by genomic and transcriptomic analyses. ISME J 9:371–384 [View Article][PubMed]
    [Google Scholar]
  46. Wagner-Döbler I., Ballhausen B., Berger M., Brinkhoff T., Buchholz I., Bunk B., Cypionka H., Daniel R., Drepper T. et al. 2010; The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker's guide to life in the sea. ISME J 4:61–77 [View Article][PubMed]
    [Google Scholar]
  47. Wang L., Liu Y., Shi X., Wang Y., Zheng Y., Dai X., Zhang X. H. 2016; Xuhuaishuia manganoxidans gen. nov. sp. nov., a manganese-oxidizing bacterium isolated from deep-sea sediment of Pacific polymetallic nodule province. Int J Syst Evol Microbiol 66:1521–1526 [View Article][PubMed]
    [Google Scholar]
  48. Yutin N., Suzuki M. T., Béjà O., Be O. 2005; Novel primers reveal wider diversity among marine aerobic anoxygenic phototrophs. Appl Environ Microbiol 71:8958–8962 [View Article][PubMed]
    [Google Scholar]
  49. Zinger L., Amaral-Zettler L. A., Fuhrman J. A., Horner-Devine M. C., Huse S. M., Welch D. B., Martiny J. B., Sogin M., Boetius A., Ramette A. 2011; Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS One 6:e24570 [View Article][PubMed]
    [Google Scholar]
  50. Zubkov M. V., Fuchs B. M., Archer S. D., Kiene R. P., Amann R., Burkill P. H. 2001; Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environ Microbiol 3:304–311 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001394
Loading
/content/journal/ijsem/10.1099/ijsem.0.001394
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error