1887

Abstract

A novel Gram-stain-negative, rod-shaped, non-spore-forming, non-flagellated, strictly aerobic strain, designated RZW3-2, was isolated from seawater from near the Yellow Sea coast of PR China (35.475° N 119.613° E). The organism grew optimally between 24 and 28 °C, at pH 6.0–7.0 and in the presence of 2–3 % (w/v) NaCl. The strain requires seawater or artificial seawater for growth and NaCl alone does not support growth. RZW3-2 contained iso-C, Cω7 and/or Cω6 and anteiso-C as the dominant fatty acids. The respiratory quinone detected in RZW3-2 was menaquinone 6 (MK6). The polar lipids of RZW3-2 comprised phosphatidylethanolamine (PE), four unidentified phospholipids (PL), two unidentified aminolipids (AL) and one unknown lipid (L). The DNA G+C content of RZW3-2 was 30.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that the novel strain was related most closely to KCTC 23969, KCTC 12392 and CIP 106478 with 98.0, 97.8 and 97.0 % sequence similarities, respectively. The DNA–DNA hybridization values between RZW3-2 and its closest phylogenetic relatives, KCTC 23969 and KCTC 12392, were 52.0±0.6 % and 49.8±1.21 % respectively. On the basis of polyphasic analyses, RZW3-2 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RZW3-2 (=JCM 30825=KCTC 42664=MCCC 1K00696).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001396
2016-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4594.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001396&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. (editors) 1995 Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, 3rd edn. New York: Wiley;
    [Google Scholar]
  2. Bernardet J. F. 2011; Family I. Flavobacteriaceae Reichenbach 1992. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 4 pp. 106–111 Edited by Krieg N. R., Ludwig W., Whitman W. B., Hedlund B. P., Paster B. J., Staley J. T., Ward N., Brown D., Parte A. New York: Springer;
    [Google Scholar]
  3. Beveridge T. J., Lawrence J. R., Murray R. G. E. 2007; Sampling and staining for light microscopy. In Methods for General and Molecular Microbiology, 3rd edn. pp 19–33 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Breznak J. A., Costilow R. N. 1994; Physicochemical factors in growth. In Methods for General and Molecular Bacteriology pp. 137–154 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Christensen H., Angen O., Mutters R., Olsen J. E., Bisgaard M. 2000; DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 50:1095–1102 [View Article][PubMed]
    [Google Scholar]
  6. Collins M. D. 1994; Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics pp. 265–309 Edited by Goodfellow M., O’Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopesare used to determine genetic relatedness among bacterial strains. Int J Syst Evol Microbiol 39:224–229
    [Google Scholar]
  8. Fukui Y., Abe M., Kobayashi M., Saito H., Oikawa H., Yano Y., Satomi M. 2013; Polaribacter porphyrae sp. nov., isolated from the red alga Porphyra yezoensis, and emended descriptions of the genus Polaribacter and two Polaribacter species. Int J Syst Evol Microbiol 63:1665–1672 [View Article][PubMed]
    [Google Scholar]
  9. Gosink J. J., Woese C. R., Staley J. T. 1998; Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of ‘Flectobacillus glomeratus’ as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 48:223–235 [View Article][PubMed]
    [Google Scholar]
  10. Hsu S. C., Lockwood J. L. 1975; Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 29:422–426[PubMed]
    [Google Scholar]
  11. Hyun D. W., Shin N. R., Kim M. S., Kim P. S., Jung M. J., Kim J. Y., Whon T. W., Bae J. W. 2014; Polaribacter atrinae sp. nov., isolated from the intestine of a comb pen shell, Atrina pectinata. Int J Syst Evol Microbiol 64:1654–1661 [View Article][PubMed]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  13. Kim B. C., Oh H. W., Kim H., Park D. S., Hong S. G., Lee H. K., Bae K. S. 2013; Polaribacter sejongensis sp. nov., isolated from Antarctic soil, and emended descriptions of the genus Polaribacter, Polaribacter butkevichii and Polaribacter irgensii. Int J Syst Evol Microbiol 63:4000–4005 [View Article][PubMed]
    [Google Scholar]
  14. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  15. Lee Y. S., Lee D. H., Kahng H. Y., Sohn S. H., Jung J. S. 2011; Polaribacter gangjinensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 61:1425–1429 [View Article][PubMed]
    [Google Scholar]
  16. Li H., Zhang X. Y., Liu C., Lin C. Y., Xu Z., Chen X. L., Zhou B. C., Shi M., Zhang Y. Z. 2014; Polaribacter huanghezhanensis sp. nov., isolated from arctic fjord sediment, and emended description of the genus Polaribacter. Int J Syst Evol Microbiol 64:973–978 [View Article][PubMed]
    [Google Scholar]
  17. Lyman J., Fleming R. H. 1940; Composition of seawater. J Mar Res 3:134–146
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Evol Microbiol 39:159–167 [View Article]
    [Google Scholar]
  19. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  20. Nedashkovskaya O. I., Kim S. B., Lysenko A. M., Kalinovskaya N. I., Mikhailov V. V., Kim I. S., Bae K. S. 2005; Polaribacter butkevichii sp. nov., a novel marine mesophilic bacterium of the family Flavobacteriaceae. Curr Microbiol 51:408–412 [View Article][PubMed]
    [Google Scholar]
  21. Nedashkovskaya O. I., Kukhlevskiy A. D., Zhukova N. V. 2013; Polaribacter reichenbachii sp. nov.: a new marine bacterium associated with the green alga Ulva fenestrata. Curr Microbiol 66:16–21 [View Article][PubMed]
    [Google Scholar]
  22. Park S., Park J. M., Jung Y. T., Lee K. C., Lee J. S., Yoon J. H. 2014; Polaribacter marinivivus sp. nov., a member of the family Flavobacteriaceae isolated from seawater. Antonie Van Leeuwenhoek 106:1139–1146 [View Article][PubMed]
    [Google Scholar]
  23. Park S., Park J. M., Jung Y. T., Lee K. H., Yoon J. H. 2015; Polaribacter undariae sp. nov., isolated from a brown alga reservoir. Int J Syst Evol Microbiol 65:1679–1685 [View Article][PubMed]
    [Google Scholar]
  24. Sasser M. 1990 Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101. Newark, DE: MIDI Inc;
    [Google Scholar]
  25. Staley J. T., Gosink J. J. 1999; Poles apart: biodiversity and biogeography of sea ice bacteria. Annu Rev Microbiol 53:189–215 [View Article][PubMed]
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  28. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd edn. pp. 330–393 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I, Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  30. Yoon J. H., Kang S. J., Oh T. K. 2006; Polaribacter dokdonensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 56:1251–1255 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001396
Loading
/content/journal/ijsem/10.1099/ijsem.0.001396
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error