1887

Abstract

During the study of hydrocarbon-degrading bacteria in the oil-contaminated soil of Gunsan, North Jeolla Province, South Korea, a yellow, Gram-stain-negative, aerobic, motile, rod-shaped bacterium, designated strain DKC-5-1, was isolated. This strain was non-sporulating, catalase-negative and oxidase-positive. It was able to grow at 10–33 °C, pH 6.0–8.5 and at an NaCl concentration of 0–1.5 % (w/v). This strain was characterized taxonomically using a polyphasic approach. Based on 16S rRNA gene sequence analysis, strain DKC-5-1 belongs to the genus and is closely related to LNB2 (96.65 % sequence similarity), A175 (96.63 % sequence similarity), UM2 (96.63 % sequence similarity), and RW1 (96.43 % sequence similarity). The only respiratory quinone was ubiquinone-10 and the major polyamine was homospermidine. The polar lipid profile revealed the presence of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, sphingoglycolipid and phosphatidyldimethylethanolamine. The predominant fatty acids of strain DKC-5-1 were summed feature 8 (Cω7 and/or Cω6), C, C 2-OH, summed feature 3 (Cω7 and/or Cω6), Cω6 and C. The genomic DNA G+C content of this novel strain was 65.9 mol%. Morphological, physiological, chemotaxonomic and phylogenetic analyses clearly distinguished this strain from its closest phylogenetic neighbours. Thus, strain DKC-5-1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is DKC-5-1 (=KEMB 9005-380=KACC 18716=JCM 31294).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001400
2016-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4621.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001400&mimeType=html&fmt=ahah

References

  1. Breznak J. A., Costilow R. N. 2007; Physicochemical factors in growth. In Methods for General and Molecular Bacteriology, 3rd edn. , pp. 309–329 Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  2. Busse J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the proteobacteria. Syst Appl Microbiol 11:1–8 [View Article]
    [Google Scholar]
  3. Busse H.-J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [View Article]
    [Google Scholar]
  4. Busse H. J., Hauser E., Kämpfer P. 2005; Description of two novel species, Sphingomonas abaci sp. nov. and Sphingomonas panni sp. nov. Int J Syst Evol Microbiol 55:2565–2569 [View Article][PubMed]
    [Google Scholar]
  5. Chaudhary D. K., Kim J. 2016; Novosphingobium naphthae sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 66:3170–3176 [View Article][PubMed]
    [Google Scholar]
  6. Chen H., Jogler M., Tindall B. J., Klenk H. P., Rohde M., Busse H. J., Overmann J. 2013; Sphingomonas starnbergensis sp. nov., isolated from a prealpine freshwater lake. Int J Syst Evol Microbiol 63:1017–1023 [View Article][PubMed]
    [Google Scholar]
  7. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45:316–354[PubMed]
    [Google Scholar]
  8. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  9. Dahal R. H., Kim J. 2016; Rhabdobacter roseus gen. nov., sp. nov., isolated from soil. Int J Syst Evol Microbiol 66:308–314 [View Article][PubMed]
    [Google Scholar]
  10. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology , pp. 21–33 Edited by Gerhardt P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  12. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  13. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  14. Frank J. A., Reich C. I., Sharma S., Weisbaum J. S., Wilson B. A., Olsen G. J. 2008; Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–2470 [View Article][PubMed]
    [Google Scholar]
  15. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H. N. 1974; Nocardia coeliaca, Nocardia autotrophica, and the Nocardin Strain. Int J Syst Bacteriol 24:54–63 [View Article]
    [Google Scholar]
  16. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  17. Kaur J., Kaur J., Niharika N., Lal R. 2012; Sphingomonas laterariae sp. nov., isolated from a hexachlorocyclohexane-contaminated dump site. Int J Syst Evol Microbiol 62:2891–2896 [View Article][PubMed]
    [Google Scholar]
  18. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  19. Kim J. K., He D., Liu Q. M., Park H. Y., Jung M. S., Yoon M. H., Kim S. C., Im W. T. 2013; Novosphingobium ginsensosidimutans sp. nov., with the ability to convert ginsenoside. Int J Syst Evol Microbiol 23:444–450
    [Google Scholar]
  20. Kim S. J., Moon J. Y., Lim J. M., Ahn J. H., Weon H. Y., Ahn T. Y., Kwon S. W. 2014; Sphingomonas aerophila sp. nov. and Sphingomonas naasensis sp. nov., isolated from air and soil, respectively. Int J Syst Evol Microbiol 64:926–932 [View Article][PubMed]
    [Google Scholar]
  21. Kim S. J., Ahn J. H., Weon H. Y., Hong S. B., Seok S. J., Kwon S. W. 2015; Parasegetibacter terrae sp. nov., isolated from paddy soil and emended description of the genus Parasegetibacter. Int J Syst Evol Microbiol 65:113–116 [View Article][PubMed]
    [Google Scholar]
  22. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  23. Komagata K., Suzuki K. 1987; Lipids and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–203 [CrossRef]
    [Google Scholar]
  24. Lin S. Y., Hameed A., Liu Y. C., Hsu Y. H., Lai W. A., Huang H. I., Young C. C. 2014; Novosphingobium arabidopsis sp. nov., a DDT-resistant bacterium isolated from the rhizosphere of Arabidopsis thaliana. Int J Syst Evol Microbiol 64:594–598 [View Article][PubMed]
    [Google Scholar]
  25. Luo Y. R., Tian Y., Huang X., Kwon K., Yang S. H., Seo H. S., Kim S. J., Zheng T. L. 2012; Sphingomonas polyaromaticivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium from an oil port water sample. Int J Syst Evol Microbiol 62:1223–1227 [View Article][PubMed]
    [Google Scholar]
  26. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Molecul Biol 3:208–218 [View Article]
    [Google Scholar]
  27. Maruyama T., Park H. D., Ozawa K., Tanaka Y., Sumino T., Hamana K., Hiraishi A., Kato K. 2006; Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 56:85–89 [View Article][PubMed]
    [Google Scholar]
  28. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  29. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  30. Nigam A., Jit S., Lal R. 2010; Sphingomonas histidinilytica sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 60:1038–1043 [View Article][PubMed]
    [Google Scholar]
  31. Pham V. H., Kim J. 2012; Cultivation of unculturable soil bacteria. Trends Biotechnol 30:475–484 [View Article][PubMed]
    [Google Scholar]
  32. Powers E. M. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61:3756–3758[PubMed]
    [Google Scholar]
  33. Saitou N., Nei M. 1987; The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  34. Sasser M. 1990 Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  35. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology , pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Stolz A., Busse H. J., Kämpfer P. 2007; Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57:572–576 [View Article][PubMed]
    [Google Scholar]
  37. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417 [View Article][PubMed]
    [Google Scholar]
  38. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  39. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  40. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Bacteriology, 3rd edn. , pp. 330–393 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R. Washington, DC: ASM Press;
    [Google Scholar]
  41. Vaughn R. H., Mitchell N. B., Levine M. 1939; The Voges–Proskauer and methyl red reactions in the coli-aerogenes group. J Am Water Works Assoc 31:993–1001
    [Google Scholar]
  42. Wittich R. M., Busse H. J., Kämpfer P., Macedo A. J., Tiirola M., Wieser M., Abraham W. R. 2007; Sphingomonas fennica sp. nov. and Sphingomonas haloaromaticamans sp. nov., outliers of the genus Sphingomonas. Int J Syst Evol Microbiol 57:1740–1746 [View Article][PubMed]
    [Google Scholar]
  43. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34:99–119 [View Article][PubMed]
    [Google Scholar]
  44. Yabuuchi E., Yamamoto H., Terakubo S., Okamura N., Naka T., Fujiwara N., Kobayashi K., Kosako Y., Hiraishi A. 2001; Proposal of Sphingomonas wittichii sp. nov. for strain RW1T, known as a dibenzo-p-dioxin metabolizer. Int J Syst Evol Microbiol 51:281–292 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001400
Loading
/content/journal/ijsem/10.1099/ijsem.0.001400
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error